The prepared nanostructure SiO2 thin films were densified by two techniques (conventional and Diode Pumped Solid State Laser (DPSS) (532 nm). X-ray diffraction (XRD), Field Emission Scanning electron microscopy (FESEM), and Atomic Force Microscope (AFM) technique were used to analyze the samples. XRD results showed that the structure of SiO2 thin films was amorphous for both Oven and Laser densification. FESEM and AFM images revealed that the shape of nano silica is spherical and the particle size is in nano range. The small particle size of SiO2 thin film densified by DPSS Laser was (26 nm) , while the smallest particle size of SiO2 thin film densified by Oven was (111 nm).
Nanostructured photodetectors have garnered great attention due to their enriched electronic and optical properties. In this work, we aim to fabricate a high-performance CeO2/Si photodetector by growing a CeO2 nanostructure film on a silicon substrate using the pulsed laser deposition (PLD) technique at different laser energy densities. The impact of laser energy density and the number of pulses on the morphological, optical, and electrical properties was studied. Field emission scanning electron microscopy (FESEM) results show that the CeO2 film has a spherical grain morphology with an average grain size ranging from 33 to 54 nm, depending on the laser energy density. The film deposited at various numbers of laser pulses also has spherical
... Show MoreIn this work, the structure properties of nano Lead sulfide PbS thin films are studied. Thin samples were prepared by pulse laser deposition and deposited on glass substrates at wavelength 1064nm wavelength with a various laser energies (200,300,400,500)nm. The study of atomic force microscope (AFM) and X-ray diffraction as well as the effect of changing the laser energy on the structural properties has been studied. It has been observed that the membrane formed is of the polycrystalline type and the predominant phase is the plane (111) and (200). The minimum grain size obtained was 16.5 nm at a laser energy about 200 mJ. The results showed that thin films of average granular sizes (75 nm) could be prepared.As for the optical properties,
... Show MoreEffect of nano and micro SiO2 particles with different weight percent (2,4,6,8 and 10) %wt on the Interlaminar fracture toughness (GIc) of 16-plies of woven roving glass fiber /epoxy composites prepared by hand lay – up technique were investigated. The specimens were tested using DCB test (mode I).
Area method was used to compute the interlaminar fracture toughness. The results show that, GIc would increase with the increasing in the filler content, the main failure in microcomposites and nanocomposites was delamination in the layers, the delamination reduced with increasing in the filler content.
Thin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.
Pulsed liquid laser ablation is considered a green method for the synthesis of nanostructures because there are no byproducts formed after the ablation. In this paper, a fiber laser of wavelength 1.064 µm, peak power of 1 mJ, pulse duration of 120 ns, and repetition rate of 20 kHz, was used to produce carbon nanostructures including carbon nanospheres and carbon nanorods from the ablation of asphalt in ethanol at ablation speeds of (100, 75, 50, 10 mm/s). The morphology, composition and optical properties of the synthesized samples were studied experimentally using FESEM, HRTEM, EDS, and UV-vis spectrophotometer. Results showed that the band gap energy decreased with decreasing the ablation speed (increasing the ablation time), the mi
... Show MoreSilica-based mesoporous materials are a class of porous materials with unique characteristics such as ordered pore structure, large surface area, and large pore volume. This review covers the different types of porous material (zeolite and mesoporous) and the physical properties of mesoporous materials that make them valuable in industry. Mesoporous materials can be divided into two groups: silica-based mesoporous materials and non-silica-based mesoporous materials. The most well-known family of silica-based mesoporous materials is the Mesoporous Molecular Sieves family, which attracts attention because of its beneficial properties. The family includes three members that are differentiated based on their pore arrangement. In this review,
... Show MoreIn this study, NAC-capped CdTe/CdS/ZnS core/double shell QDs were synthesized in an aqueous medium to investigate their utility in distinguishing normal DNA from mutated DNA extracted from biological samples. Following the interaction between the synthesized QDs with DNA extracted from leukemia cases (represents damaged DNA) and that of healthy donors (represents undamaged DNA), differential fluorescent emission maxima and intensities were observed. It was found that damaged DNA from leukemic cells DNA-QDs conjugates at 585 nm while intact DNA (from healthy subjects) DNA–QDs conjugates at 574 nm. The obtained results from the optical analyses indicate that the prepared QDs could be utilized as probe for detecting disrupted DNA th
... Show More