Unmanned aerial vehicles (UAVs) can provide valuable spatial information products for many projects across a wide range of applications. One of the major challenges in this discipline is the quality of positioning accuracy of the resulting mapping products in professional photogrammetric projects. This is especially true when using low-cost UAV systems equipped with GNSS receivers for navigation. In this study, the influence of UAV flight direction and camera orientation on positioning accuracy in an urban area on the west bank of the Euphrates river in Iraq was investigated. Positioning accuracy was tested in this study with different flight directions and camera orientation settings using a UAV autopilot app (Pix4Dcapture software (Ver. 4.11.0)). The different combinations of these two main parameters (camera orientation and flight direction) resulted in 11 different flight cases for which individual planimetric and vertical accuracies were evaluated. Eleven flight sets of dense point clouds, DEMs, and ortho-imagery were created in this way to compare the achieved positional accuracies. One set was created using the direct georeferencing method (without using GCPs), while the other ten sets were created using the indirect georeferencing approach based on ground truth measurements of five artificially created GCPs. Positional accuracy was found to vary depending on the user-defined flight plan settings, despite an approximately constant flight altitude. However, it was found that the horizontal accuracy achieved was better than the vertical accuracy for all flight sets. This study revealed that combining multiple sets of images with different flight directions and camera orientations can significantly improve the overall positional accuracy to reach several centimeters.
A true random TTL pulse generator was implemented and investigated for quantum key distribution systems. The random TTL signals are generated by low cost components available in the local markets. The TTL signals are obtained by using true random binary sequences based on registering photon arrival time difference registered in coincidence windows between two single – photon detectors. The true random TTL pulse generator performance was tested by using time to digital converters which gives accurate readings for photon arrival time. The proposed true random pulse TTL generator can be used in any quantum -key distribution system for random operation of the transmitters for these systems
A Geographic Information System (GIS) is a computerized database management system for accumulating, storage, retrieval, analysis, and display spatial data. In general, GIS contains two broad categories of information, geo-referenced spatial data and attribute data. Geo-referenced spatial data define objects that have an orientation and relationship in two or three-dimensional space, while attribute data is qualitative data that can be counted for recording and analysis. The main aim of this research is to reveal the role of GIS technology in the enhancement of bridge maintenance management system components such as the output results, and make it more interpretable through dynamic colour coding and more sophisticated visualization
... Show MoreSurface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned above, which is a very
... Show MoreWith the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch
A particle swarm optimization algorithm and neural network like self-tuning PID controller for CSTR system is presented. The scheme of the discrete-time PID control structure is based on neural network and tuned the parameters of the PID controller by using a particle swarm optimization PSO technique as a simple and fast training algorithm. The proposed method has advantage that it is not necessary to use a combined structure of identification and decision because it used PSO. Simulation results show the effectiveness of the proposed adaptive PID neural control algorithm in terms of minimum tracking error and smoothness control signal obtained for non-linear dynamical CSTR system.
Surface water samples from different locations within Tigris River's boundaries in Baghdad city have been analyzed for drinking purposes. Correlation coefficients among different parameters were determined. An attempt has been made to develop linear regression equations to predict the concentration of water quality constituents having significant correlation coefficients with electrical conductivity (EC). This study aims to find five regression models produced and validated using electrical conductivity as a predictor to predict total hardness (TH), calcium (Ca), chloride (Cl), sulfate (SO4), and total dissolved solids (TDS). The five models showed good/excellent prediction ability of the parameters mentioned
... Show MorePhase change materials are extensively studied for use in low-, mid-, and high-temperature applications due to their melting and solidification temperatures, latent heat, and thermophysical properties. This work aims to explore the energy stored, or released and their duration for the energy storage unit formed of a phase change material surrounding a tube within which a hot or cold, single or Two-Phase fluid flows, serving as a heat source or sink. The 3D axial transient thermal analysis of the energy storage unit is performed using the finite element method via a MATLAB-developed computer program. The effects of single- or Two-Phase fluid flow on temperature distribution, solidification, melting duration, and energy stored within phase ch
... Show MoreThe study aims to identify the impact of the implementation of the integrated education strategy in the curriculum of the Arabic language for the seventh grade on the academic achievement in the schools of the capital Amman. The researcher adopted the experimental method, where two divisions of the seventh grade students were chosen from the secondary school for girls. The sample of the study was 60 students divided into two equal groups: 30 students represented the experimental group (A) and (30) students represented the control group. To collect the needed data, a test of (40) Multiple Choices was used. The results showed statistically significant differences between the mean scores of the experimental group who were taught acc
... Show More