This study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive X-ray maps showed a good distribution of Ca and P particles with some agglomeration on the surface. The crystalline nature of the β-TCPs coat can be concluded from the sharp peaks in the x-ray diffraction patterns. EM was low near the top surface of the coat and increased gradually with the depth. The microhardness value of a coated substrate was lower than the hardness value of a control substrate. Unlike conventional deposition techniques, laser processes can be used to build a coat with optimum bonding and desirable mechanical properties, indicating that processing and coating seem to be attractive for bioinert ceramic zirconia implants.
Mutans streptococci (MS) are a group of oral bacteria considered as the main cariogenic organisms. MS consists of several species of genus Streptococcus which are sharing similar phenotypes and genotypes. The aim of this study is to determine the genetic diversity of the core species of clinical strains of Streptococcus mutans, Streptococcus sobrinus and Streptococcus downei by using repitative extragenic palindromic (REP) primer. The DNA of the clinical strains of S. mutans (n=10), S. sobrinus (n=05) and S. downei (n=04) have been employed in the present study, which have been previously isolated from caries active subjects. The DNA of the clinical and reference strains was
... Show MoreA dynamic analysis method has been developed to investigate and characterize embedded delamination on the dynamic response of composite laminated structures. A nonlinear finite element model for geometrically large amplitude free vibration intact plate and delamination plate analysis is presented using higher order shear deformation theory where the nonlinearity was introduced in the Green-Lagrange sense. The governing equation of the vibrated plate were derived using the Variational approach. The effect of different orthotropicity ratio, boundary condition and delamination size on the non-dimenational fundamental frequency and frequency ratios of plate for different stacking sequences are studied. Finally th
... Show MoreBackground: Lateral cephalometric radiography is commonly used as a standard tool in orthodontic assessment and treatment planning. This study aimed to determine the tongue and surrounding space area in a sample of Iraqi adults with class I dental and skeletal pattern. Materials and methods: The study included thirty healthy subjects (15 males and 15 females) with an age ranged between 23-34 years and class I dental and skeletal pattern with no history of any sleep related disorders. The assessed cephalometric measurement included length and height of the tongue and position of hyoid bone from cervical line. Descriptive statistics were obtained for the data. Genders difference was evaluated by independent sample t-test. Results: There wer
... Show MoreBackground: The type of dental implant surface is one of many factors that determine the success of implant restoration. This study aimed to study the effect of mixture of nano titanium oxide with nanohydroxyapatite coating of screw shaped CPTi dental implant on bond strength at bone implant interface by torque removal test related to two healing periods (2 and 6 weeks). Materials and methods: Dip coating process was performed to get an even coating layer on CPTi screws. X-ray diffraction (XRD) analysis and microscopical examination were performed on the coating surfaces of the CPTi. The tibia of 10 white New Zealand rabbits was chosen as implantation sites. The tibia of each rabbit received two screws, one was coated with mixture of nanoT
... Show MoreThis paper demonstrates the spatial response uniformity (SRU) of two types of heterojunctions (CdS, PbS /Si) laser detectors. The spatial response nonuniformity of these heterojunctions is not significant and it is negligible in comparison with p+- n silicon photodiode. Experimental results show that the uniformity of CdS /Si is better than that of PbS /Si heterojunction
In this research , design and study a (beam expander) for the Nd – YAG laser with (1.06 ?m) Wavelength has been studied at 5X zoom with narrow diversion in the room temperature. by using (ZEMAX) to study the system. Evaluate its performance via (ZEMAX) outputs, as bright Spot Diagram via (RMS), Ray Fan Plot, Geometric Encircled Energy and the value of Focal shift. Then study the effect of field of view on the outputs in the room temperature.
In the current research, we investigated the absorption spectrum for R590 and C480 dyes in ethanol solvent for different dye solution concentrations of 10-4, 10-5 and 10-6M. These dyes have been prepared and studied before and after gamma irradiation (first, second ionization) using cesium-137 source with absorbed doses of 18.36 Gy (time exposure of 10 days) and 73.44 Gy (with time exposure of 40 days). We noticed that the absorption intensity was decreased with decreasing concentration, before gamma irradiation while the absorption spectrum peak shifted towards the short wavelength (blue shift). It was also found that the intensity of absorption spectrum increased and shifted the absorption spectrum peak towards the long wavelength (red
... Show MoreThe sample's physical characteristics and laser parameters impact the generation and characterization of Laser-Induced Plasma (LIP), which is a relevant phenomenon in many applications. We investigated the effect of laser energy on laser-induced Zn plasma characterization in this study. A Zn plasma with a repeating frequency of 6 Hz, a first wavelength of 1064 nm, a pulse duration of 10 ns, and a laser energy range of 300 mJ to 500 mJ was created using a Q-switched ND: YAG laser. The basic plasma properties, such as electron temperature and density, were estimated using optical emission spectroscopy (OES). The electrons' temperature was measured by the Boltzmann plot method, and the value of the electrons' temperature ranged from 1.6 eV
... Show More