This study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive X-ray maps showed a good distribution of Ca and P particles with some agglomeration on the surface. The crystalline nature of the β-TCPs coat can be concluded from the sharp peaks in the x-ray diffraction patterns. EM was low near the top surface of the coat and increased gradually with the depth. The microhardness value of a coated substrate was lower than the hardness value of a control substrate. Unlike conventional deposition techniques, laser processes can be used to build a coat with optimum bonding and desirable mechanical properties, indicating that processing and coating seem to be attractive for bioinert ceramic zirconia implants.
In this work, the dyes Rhodamine B and Coumarin 102 containing titanium dioxide nanoparticles were used as scattering centers to fabricate a random gain medium. The laser dye was dissolved in hexanol and methanol solvent respectively. The titanium dioxide nanoparticles were synthesized by DC reaction magnetron spraying technique. The random-gain medium was made by adding 2.5 mg of titanium dioxide nanoparticles to Rhodamine and coumarin 102 dyes by coating the glass cell with two-sided titanium dioxide with high spectral efficiency and low production cost. A narrow line optical emission was detected at 565 nm for Rhodamine B and 534 nm for coumarin 102, where it was found that rhodamine B dye has FWHM 8 nm and coumarin dye 102 has FWHM 9 nm
... Show MoreAlginate is one of the natural biopolymers that is widely used for drug formulations, combination of alginate with other polymers, such as gum acacia, pectin, and carrageenan can increase mechanical strength, therefore, can reduce leakage of the encapsulated active pharmaceutical ingredient from the polymer matrix. Interaction of alginate and these polymers can occur via intermolecular hydrogen bonds causing synergism, which is determined from the viscosity of polymer mixture.
Alginate was combined with gum acacia/pectin/carrageenan in different blending ratios (100:0, 75:25, 50:50, 25:75, and 0:100) with and without addition of CaCl2. The synergism effect is obtained from the design of experimental (DoE), and calculati
... Show MoreThe CdS quantum dots were prepared by chemical reaction
of cadmium oleylamine (Cd –oleylamine complex) with the
sulfite-oleylamine (S-oleylamine) with 1:6 mole ratios. The
optical properties structure and spectroscopy of the product
quantum dot were studied. The results show the dependence of the
optical properties on the crystal dimension and the formation of
the trap states in the energy band gap.
Luffa aegyptiaca is a plant of multi-purpose importance whose usefulness cuts across virtually all areas of life. This study has characterized L. aegyptiaca in Lagos state and determined the mineral, proximate, phytochemical as well as the heavy metal accumulation potential. Samples were collected from the 20 Local Government Areas (LGAs) in Lagos state at 2 samples per location. Genetic similarity and intra-specific variation in 40 samples of L. aegyptiaca were determined using 3 Random Amplified Polymorphic DNA (RAPD) primers which yielded a total of 42 markers of which 25 was polymorphic. The maximum number of bands (14) was produced by OPC4 while the minimum (7) were produced by OPAF20. Percenta
... Show MoreLet A ⊆ V(H) of any graph H, every node w of H be labeled using a set of numbers; , where d(w,v) denotes the distance between node w and the node v in H, known as its open A-distance pattern. A graph H is known as the open distance-pattern uniform (odpu)-graph, if there is a nonempty subset A ⊆V(H) together with is the same for all . Here is known as the open distance pattern uniform (odpu-) labeling of the graph H and A is known as an odpu-set of H. The minimum cardinality of vertices in any odpu-set of H, if it exists, will be known as the odpu-number of the graph H. This article gives a characterization of maximal outerplanar-odpu graphs. Also, it establishes that the possible odpu-number of an odpu-maximal outerplanar graph i
... Show MoreBackground: Gallstone disease (GSD) is a significant global health burden with variable prevalence influenced by metabolic, genetic, and infectious factors. Increasing evidence suggests that Gram-positive bacteria, particularly Staphylococcus aureus and Enterococcus species, contribute to gallstone pathogenesis through enzymatic activity and biofilm formation. Objectives: To characterize Gram-positive bacteria within gallstones from Iraqi patients, evaluate their biofilm-forming capacity, and analyze the relationship between bacterial colonization, gallstone type, and cholesterol levels. Methods: A total of 100 gallstones were obtained from patients undergoing elective cholecystectomy between October 2024 and March 2025. Stones were
... Show MoreIn this study, the results of x-ray diffraction methods were used to determine the Crystallite size and Lattice strain of Cu2O nanoparticles then to compare the results obtained by using variance analysis method, Scherrer method and Williamson-Hall method. The results of these methods of the same powder which is cuprous oxide, using equations during the determination the crystallite size and lattice strain, It was found that the results obtained the values of the crystallite size (28.302nm) and the lattice strain (0.03541) of the variance analysis method respectively and for the Williamson-Hall method were the results of the crystallite size (21.678nm) and lattice strain (0.00317) respectively, and Scherrer method which gives the value of c
... Show MoreA series of new imides compounds[1-4] were synthesized from reaction of tetrachlorophthalic anhydride or nitro phthalic anhydride or malic anhydride or Succinic anhydride with 4-amino benzene thiol under fusion conditions. Chloroacetic acid has been added after compounds [1-4] reacted with distilled H2O and Na2CO3, producing compounds [5-8]. In benzene, compounds [5-8] also interacted with the thionyl chloride to produce [9-12]. Poly (vinyl alcohol) was chemically modified by reacting PVA with compounds [9-12] and dimethyl formamide to produce compounds [13-16]. Iron oxide nanoparticles (IONPs) are mixed with modified PVA [13-16] to create nanocomposites [17-20]. Spectral and analytical data from synthesized compounds, such as 1H-NMR, FTI
... Show MoreNew series of metal ions complexes have been prepared from the new ligand 1,5- Dimethyl-4- (5-oxohexan-2- ylideneamino) -2-phenyl- 1H-pyrazol-3 (2H)-one derived from 2,5-hexandione and 4-aminophenazone. Then, its V(IV), Ni(II), Cu(II), Pd(II), Re(V) and Pt(IV) complexes prepared. The compounds have been characterized by FT-IR, UV-Vis, mass and 1H and 13C-NMR spectra, TGA curve, magnetic moment, elemental microanalyses (C.H.N.O.), chloride containing, Atomic absorption and molar conductance. Hyper Chem-8 program has been used to predict structural geometries of compounds in gas phase, the heat of formation, (binding, total and electronic energy) and dipole moment at 298 K.