This study aims to fabricate and assess the β-tricalcium phosphate (β-TCP) bioactive ceramic coat layer on bioinert ceramic zirconia implants through the direct laser melting technique by applying a long-pulsed Nd:YAG laser of 1064 nm. Surface morphologies, adherence, and structural change in the coatings were evaluated by optical microscopy, field emission scanning electron microscope, hardness, and x-ray diffractometer. The elastic modulus (EM) of the coating was also determined using the nanoindentation test. The quality of the coating was improved when the laser power was 90 W with a decrease in the scan speed to 4 mm s−1. The chemical composition of the coat was maintained after laser processing; also, the Energy Dispersive X-ray maps showed a good distribution of Ca and P particles with some agglomeration on the surface. The crystalline nature of the β-TCPs coat can be concluded from the sharp peaks in the x-ray diffraction patterns. EM was low near the top surface of the coat and increased gradually with the depth. The microhardness value of a coated substrate was lower than the hardness value of a control substrate. Unlike conventional deposition techniques, laser processes can be used to build a coat with optimum bonding and desirable mechanical properties, indicating that processing and coating seem to be attractive for bioinert ceramic zirconia implants.
In this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of differen
... Show MoreThe necessary optimality conditions with Lagrange multipliers are studied and derived for a new class that includes the system of Caputo–Katugampola fractional derivatives to the optimal control problems with considering the end time free. The formula for the integral by parts has been proven for the left Caputo–Katugampola fractional derivative that contributes to the finding and deriving the necessary optimality conditions. Also, three special cases are obtained, including the study of the necessary optimality conditions when both the final time and the final state are fixed. According to convexity assumptions prove that necessary optimality conditions are sufficient optimality conditions.
... Show MoreThe present study was performed to detect the molecular and the phylogenetic identification of species that belonging to the genus of Moniezia Blanchard, 1891 which affected intestines of sheep in Al-Diwaniyah city, Iraq; fifty intestine samples were sought for the infestation of Moniezia spp. from the city slaughterhouse from 1 October to 30 November 2017, this tapeworm was found to infest the intestines of 13 sheep.
For morphological identify the genus of this tapeworm, eggs from one gravid proglottid of the thirteen worms were examined, polymerase chain reaction (PCR) and the PCR-product-based sequencing were applied on 4 Moniezia tapeworms targeti
... Show MoreTo compare the corneal epithelial thickness profile in patients with dry eyes and keratoconus suspect with normal healthy eyes.
The study involved 120 eyes with an age range from 19 to 30 years. Forty eyes had normal corneal topography and no dry eyes. Forty eyes had dry eyes but had normal corneal topography. The last 40 eyes were keratoconus suspect and had no symptoms or signs of dry eyes.
Central epithelial thickness was not different statistically for all eyes. ( p-value: 0.1). The superior epithelial thickness was 53.5 µm ±3.1 in the control
Mesoporous silica (MPS) nanoparticle was prepared as carriers for drug delivery systems by sol–gel method from sodium silicate as inexpensive precursor of silica and Cocamidopropyl betaine (CABP) as template. The silica particles were characterized by SEM, TEM, AFM, XRD, and N2adsorption–desorption isotherms. The results show that the MPS particle in the nanorange (40-80 nm ) with average diameter equal to 62.15 nm has rods particle morphology, specific surface area is 1096.122 m2/g, pore volume 0.900 cm3/g, with average pore diameter 2.902 nm, which can serve as efficient carriers for drugs. The adsorption kinetic of Ciprofloxacin (CIP) drug was studied and the data were analyzed and found to match well with
... Show More