The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes. Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2 gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil recovery in reservoirs with bottom water drive and strong water coning tendencies. Many physical and simulation models of GAGD performance were studied at ambient and reservoir conditions to investigate the effects of this method to enhance the recovery of oil and to examine the most effective parameters that control the GAGD process. A prototype 2D simulation model based on the scaled physical model was built for CO2-assisted gravity drainage in different statement scenarios. The effects of gas injection rate, gas injection pressure and oil production rate on the performance of immiscible CO2-assisted gravity drainage-enhanced oil recovery were investigated. The results revealed that the ultimate oil recovery increases considerably with increasing oil production rates. Increasing gas injection rate improves the performance of the process while high pressure gas injection leads to less effective gravity mediated recovery.
One of the most important enhanced oil recoveries methods is miscible displacement. During this method preferably access to the conditions of miscibility to improve the extraction process and the most important factor in these conditions is miscibility pressure. This study focused on establishing a suitable correlation to calculate the minimum miscibility pressure (MMP) required for injecting hydrocarbon gases into southern Iraq oil reservoir. MMPs were estimated for thirty oil samples from southern Iraqi oil fields by using modified Peng and Robinson equation of state. The obtained PVT reports properties were used for tunning the equation of state parameters by making a match between the equation of state results with experimenta
... Show MoreIt is very difficult to obtain the value of a rock strength along the wellbore. The value of Rock strength utilizing to perform different analysis, for example, preventing failure of the wellbore, deciding a completion design and, control the production of sand. In this study, utilizing sonic log data from (Bu-50) and (BU-47) wells at Buzurgan oil field. Five formations have been studied (Mishrif, Sadia, Middle lower Kirkuk, Upper Kirkuk, and Jaddala) Firstly, calculated unconfined compressive strength (UCS) for each formation, using a sonic log method. Then, the derived confined compressive rock strengthens from (UCS) by entering the effect of bore and hydrostatic pressure for each formation. Evaluations th
... Show MorePrediction of penetration rate (ROP) is important process in optimization of drilling due to its crucial role in lowering drilling operation costs. This process has complex nature due to too many interrelated factors that affected the rate of penetration, which make difficult predicting process. This paper shows a new technique of rate of penetration prediction by using artificial neural network technique. A three layers model composed of two hidden layers and output layer has built by using drilling parameters data extracted from mud logging and wire line log for Alhalfaya oil field. These drilling parameters includes mechanical (WOB, RPM), hydraulic (HIS), and travel transit time (DT). Five data set represented five formations gathered
... Show MoreThe Ratawi Oil Field (ROF) is one of Iraq's most important oil fields because of its significant economic oil reserves. The major oil reserves of ROF are in the Mishrif Formation. The main objective of this paper is to assess the petrophysical properties, lithology identification, and hydrocarbon potential of the Mishrif Formation using interpreting data from five open-hole logs of wells RT-2, RT-4, RT-5, RT-6, and RT-42. Understanding reservoir properties allows for a more accurate assessment of recoverable oil reserves. The rock type (limestone) and permeability variations help tailor oil extraction methods, extraction methods and improving recovery techniques. The petrophysical properties were calculated using Interactive Petroph
... Show MoreThe depletion of petroleum reserves and increasing environmental concerns have driven the development of eco-friendly asphalt binders. This research investigates the performance of natural asphalt (NA) modified with waste engine oil (WEO) as a sustainable alternative to conventional petroleum asphalt (PA). The study examines NA modified with 10%, 20%, and 30% WEO by the weight of asphalt to identify an optimal blend ratio that enhances the binder’s flexibility and workability while maintaining high-temperature stability. Comprehensive testing was conducted, including penetration, softening point, viscosity, ductility, multiple stress creep recovery (MSCR), linear amplitude sweep (LAS), energy-dispersive X-ray spectroscopy (EDX), F
... Show MoreIn this study, sulfur was removed from imitation oil using oxidative desulfurization process. Silicoaluminophosphate (SAPO-11) was prepared using the hydrothermal method with a concentration of carbon nanotubes (CNT) of 0% and 7.5% at 190 °C crystallization temperature. The final molar composition of the as-prepared SAPO-11 was Al2O3: 0.93P2O5: 0.414SiO2. 4% MO/SAPO-11 was prepared using impregnation methods. The produced SAPO-11 was described using X-ray diffraction (XRD) and Brunauer-Emmet-Teller (N2 adsorption–desorption isotherms). It was found that the addition of CNT increased the crystallinity of SAPO-11. The results showed that the surface area of SAPO-11 containing 7.5% CNT was 179.54 m2/g, and the pore volume was 0.31
... Show MoreThe Albian Carbonate-clastic succession in the present study is represented by the Mauddud and Nahr Umr formations were deposited during the Albian stage within the Wasia Group More than 200 thin sections of cores and cuttings in addition to well logs data for Nahr Umr and Mauddud formations from 4 boreholes within two oil fields (Ba-4, Ba-8, Ns-2 and Ns-4) were used to interpret the different associations facies as well as the facies architectures to describe the sedimentary framework of the basin and development the petrophysical properties. Seven major microfacies were diagnosed in the carbonate succession of the Mauddud Formation, while the Nar Umr Formation includes five lithofacies; their grain types characteristic and deposit
... Show MoreThis study is achieved in the local area in Eridu oil field, where the Mishrif Formation is considered the main productive reservoir. The Mishrif Formation was deposited during the Cretaceous period in the secondary sedimentary cycle (Cenomanian-Early Turonian as a part of the Wasia Group a carbonate succession and widespread throughout the Arabian Plate. There are four association facies are identified in Mishrif Formation according the microfacies analysis: FA1-Deep shelf facies association (Outer Ramp); FA2-Slope (Middle Ramp); FA3-Reef facies (Shoal) association (Inner ramp); FA4-Back Reef facies association. Sequence stratigraphic analysis show there are three stratigraphic surfaces based on the abrupt changing in depositional
... Show MoreAir pollution evaluation of the operational processes in the East Baghdad oil field was carried out. The analysis was carried out by ICP-MS technique. Total Suspended Particles (TSP) air load was higher than Iraqi Standards and world international allowable limits of World Health Organization. The mean concentrations of gases carbon monoxide, carbon dioxide, sulfur dioxide, in the air were within national and world standards, while the mean concentration of nitrogen dioxide was higher than standard limits. The air of the study area is considered a good quality for CO, CO2 and NO2 with no health effect, while it is hazardous for TSP that have serious risk for people with respiratory disease. The mean concentrations of Cd, Cr, Cu and
... Show More