Preferred Language
Articles
/
xIa7QYYBIXToZYALD4CL
Numerical Simulation of Immiscible CO2-Assisted Gravity Drainage Process to Enhance Oil Recovery
...Show More Authors

The Gas Assisted Gravity Drainage (GAGD) process has become one of the most important processes to enhance oil recovery in both secondary and tertiary recovery stages and through immiscible and miscible modes.  Its advantages came from the ability to provide gravity-stable oil displacement for improving oil recovery, when compared with conventional gas injection methods such as Continuous Gas Injection (CGI) and Water – Alternative Gas (WAG). Vertical injectors for CO2   gas were placed at the top of the reservoir to form a gas cap which drives the oil towards the horizontal oil producing wells which are located above the oil-water-contact. The GAGD process was developed and tested in vertical wells to increase oil recovery in reservoirs with bottom water drive and strong water coning tendencies. Many physical and simulation models of GAGD performance were studied at ambient and reservoir conditions to investigate the effects of this method to enhance the recovery of oil and to examine the most effective parameters that control the GAGD process.      A prototype 2D simulation model based on the scaled physical model was built for CO2-assisted gravity drainage in different statement scenarios. The effects of gas injection rate, gas injection pressure and oil production rate on the performance of immiscible CO2-assisted gravity drainage-enhanced oil recovery were investigated. The results revealed that the ultimate oil recovery increases considerably with increasing oil production rates. Increasing gas injection rate improves the performance of the process while high pressure gas injection leads to less effective gravity mediated recovery.

Crossref
Publication Date
Wed Jun 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Studying the Factors Effects on the Flowability of ZnO-CuO/γAl2O3 Catalyst Through Hopper Before Tableting Process
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Studying and Modeling the Effect of Graphite Powder Mixing Electrical Discharge Machining on the Main Process Characteristics
...Show More Authors

Abstract

This paper concerned with study the effect of a graphite micro powder mixed in the kerosene dielectric fluid during powder mixing electric discharge machining (PMEDM) of high carbon high chromium AISI D2 steel. The type of electrode (copper and graphite), the pulse current and the pulse-on time and mixing powder in kerosene dielectric fluid are taken as the process main input parameters. The material removal rate MRR, the tool wear ratio TWR and the work piece surface roughness (SR) are taken as output parameters to measure the process performance. The experiments are planned using response surface methodology (RSM) design procedure. Empirical models are developed for MRR, TWR and SR, using the analysis

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Elimination of phenol by sonoelctrochemical process utilizing graphite, stainless steel, and titanium anodes: optimization by taguchi approach
...Show More Authors

   Phenol is one of the worst-damaging organic pollutants, and it produces a variety of very poisonous organic intermediates, thus it is important to find efficient ways to eliminate it. One of the promising techniques is sonoelectrochemical processing. However, the type of electrodes, removal efficiency, and process cost are the biggest challenges. The main goal of the present study is to investigate the removal of phenol by a sonoelectrochemical process with different anodes, such as graphite, stainless steel, and titanium. The best anode performance was optimized by using the Taguchi approach with an L16 orthogonal array. the degradation of phenol sonoelectrochemically was investigated with three process parameters: current de

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Dec 18 2017
Journal Name
Al-khwarizmi Engineering Journal
Optimization and Prediction of Process Parameters in SPIF that Affecting on Surface Quality Using Simulated Annealing Algorithm
...Show More Authors

Incremental sheet metal forming is a modern technique of sheet metal forming in which a uniform sheet is locally deformed during the progressive action of a forming tool. The tool movement is governed by a CNC milling machine. The tool locally deforms by this way the sheet with pure deformation stretching. In SPIF process, the research is concentrate on the development of predict models for estimate the product quality. Using simulated annealing algorithm (SAA), Surface quality in SPIF has been modeled. In the development of this predictive model, spindle speed, feed rate and step depth have been considered as model parameters. Maximum peak height (Rz) and Arithmetic mean surface roughness (Ra) are used as response parameter to assess th

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (57)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Fri Sep 01 2023
Journal Name
Journal Of Ecological Engineering
Modification of Electro-Fenton Process with Granular Activated Carbon for Phenol Degradation – Optimization by Response Surface Methodology
...Show More Authors

As a result of rapid industrialization and population development, toxic chemicals have been introduced into water systems in recent decades. Because of its excellent efficiency and simple design, the three-dimensional (3D) electro-Fenton method has been used for the treatment of wastewater. The goal of the current study is to explore the efficiency of phenol removal by the 3D electro-Fenton process, which is one of the advanced oxidation processes (AOPs). In the present work, the effect of the addition of granular activated carbon (GAC) particles to the electro-Fenton system as the third electrode would be investigated in the presence of graphite as the anode and nickel foam as the cathode, which is the source of electro-generated hydrogen

... Show More
View Publication
Scopus (8)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Mon Dec 30 2024
Journal Name
Water, Air, & Soil Pollution
Design of New Wet Heterogeneous Photo Oxidation Process for Refinery Waste Water Treatment in Photo Baffled Reactor
...Show More Authors

View Publication
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
International Journal Of Agricultural And Statistical Sciences
A noval SVR estimation of figarch modal and forecasting for white oil data in Iraq
...Show More Authors

The purpose of this paper is to model and forecast the white oil during the period (2012-2019) using volatility GARCH-class. After showing that squared returns of white oil have a significant long memory in the volatility, the return series based on fractional GARCH models are estimated and forecasted for the mean and volatility by quasi maximum likelihood QML as a traditional method. While the competition includes machine learning approaches using Support Vector Regression (SVR). Results showed that the best appropriate model among many other models to forecast the volatility, depending on the lowest value of Akaike information criterion and Schwartz information criterion, also the parameters must be significant. In addition, the residuals

... Show More
View Publication Preview PDF
Scopus
Publication Date
Sun Jan 01 2017
Journal Name
Kufa Journal For Nursing Sciences
Effectiveness of Simulation Techniques on the Nursing Students Knowledge toward Cardiopulmonary Resuscitation for Adults at College of Nursing/University of Baghdad
...Show More Authors

MM Abdulwahhab, kufa Journal for Nursing sciences, 2017 - Cited by 1

View Publication Preview PDF
Publication Date
Sat Feb 01 2020
Journal Name
Structures
Experimental and numerical study on wrapping concrete cylinders post heating and cooling under preload using CFRP fabrics
...Show More Authors

This paper reports test results and describes a numerical investigation of the effectiveness of using carbon fibre reinforced polymer (CFRP) fabrics for strengthening concrete cylinders that have been undamaged and damaged due to heating under preload. The purpose of this research was to investigate whether there is any difference in the performance of CFRP-wrapped cylinders if the wrapping is done under preload, and those for which neither heating, cooling nor wrapping was done under preload. The cylinders were exposed to 30% of maximum load at ambient temperature during heating and cooling before being wrapped under preload. Of 18 Ø 100 × 200 mm identical cylinders, 6 were left as control samples without heating, 12 were exposed t

... Show More
Scopus (15)
Crossref (11)
Scopus Clarivate Crossref