Cancer is in general not a result of an abnormality of a single gene but a consequence of changes in many genes, it is therefore of great importance to understand the roles of different oncogenic and tumor suppressor pathways in tumorigenesis. In recent years, there have been many computational models developed to study the genetic alterations of different pathways in the evolutionary process of cancer. However, most of the methods are knowledge-based enrichment analyses and inflexible to analyze user-defined pathways or gene sets. In this paper, we develop a nonparametric and data-driven approach to testing for the dynamic changes of pathways over the cancer progression. Our method is based on an expansion and refinement of the pathway being studied, followed by a graph-based multivariate test, which is very easy to implement in practice. The new test is applied to the rich Cancer Genome Atlas data to study the (epi)genetic alterations of 186 KEGG pathways in the development of serous ovarian cancer. To make use of the comprehensive data, we incorporate three data types in the analysis representing gene expression level, copy number and DNA methylation level. Our analysis suggests a list of nine pathways that are closely associated with serous ovarian cancer progression, including cell cycle, ERBB, JAK-STAT signaling and p53 signaling pathways. By pairwise tests, we found that most of the identified pathways contribute only to a particular transition step. For instance, the cell cycle and ERBB pathways play key roles in the early-stage transition, while the ECM receptor and apoptosis pathways contribute to the progression from stage III to stage IV. The proposed computational pipeline is powerful in detecting important pathways and gene sets that drive cancers at certain stage(s). It offers new insights into the understanding of molecular mechanism of cancer initiation and progression. © 2020 Elsevier Ltd
DeepFake is a concern for celebrities and everyone because it is simple to create. DeepFake images, especially high-quality ones, are difficult to detect using people, local descriptors, and current approaches. On the other hand, video manipulation detection is more accessible than an image, which many state-of-the-art systems offer. Moreover, the detection of video manipulation depends entirely on its detection through images. Many worked on DeepFake detection in images, but they had complex mathematical calculations in preprocessing steps, and many limitations, including that the face must be in front, the eyes have to be open, and the mouth should be open with the appearance of teeth, etc. Also, the accuracy of their counterfeit detectio
... Show MoreSphingolipids are key components of eukaryotic membranes, particularly the plasma membrane. The biosynthetic pathway for the formation of these lipid species is largely conserved. However, in contrast to mammals, which produce sphingomyelin, organisms such as the pathogenic fungi and protozoa synthesize inositol phosphorylceramide (IPC) as the primary phosphosphingolipid. The key step involves the reaction of ceramide and phosphatidylinositol catalysed by IPC synthase, an essential enzyme with no mammalian equivalent encoded by the AUR1 gene in yeast and recently identified functional orthologues in the pathogenic kinetoplastid protozoa. As such this enzyme represents a promising target for novel anti-fungal and anti-protozoal drugs. Given
... Show MoreIn this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show MoreRecently, there has been an increasing advancement in the communications technology, and due to the increment in using the cellphone applications in the diverse aspects of life, it became possible to automate home appliances, which is the desired goal from residences worldwide, since that provides lots of comfort by knowing that their appliances are working in their highest effi ciency whenever it is required without their knowledge, and it also allows them to control the devices when they are away from home, including turning them on or off whenever required. The design and implementation of this system is carried out by using the Global System of Mobile communications (GSM) technique to control the home appliances – In this work, an ele
... Show MoreIn this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de
... Show MoreThe current research aims to prepare a proposed Programmebased sensory integration theory for remediating some developmental learning disabilities among children, researchers prepared a Programme based on sensory integration through reviewing studies related to the research topic that can be practicedby some active teaching strategies (cooperative learning, peer learning, Role-playing, and educational stories). The Finalformat consists of(39) training sessions.
Learning the vocabulary of a language has great impact on acquiring that language. Many scholars in the field of language learning emphasize the importance of vocabulary as part of the learner's communicative competence, considering it the heart of language. One of the best methods of learning vocabulary is to focus on those words of high frequency. The present article is a corpus based approach to the study of vocabulary whereby the research data are analyzed quantitatively using the software program "AntWordprofiler". This program analyses new input research data in terms of already stored reliable corpora. The aim of this article is to find out whether the vocabularies used in the English textbook for Intermediate Schools in Iraq are con
... Show More