Unused and expired pharmaceutical drugs are a novel type of organic corrosion inhibitor. They are less expensive, more effective, and less harmful than conventional organic corrosion inhibitors. This study investigated the effects of concentration, adsorption mechanism and thermodynamic parameters of enalapril malate (ENAP) as a corrosion inhibitor for carbon steel in a saline solution (3.5 % NaCl). The polarization method was used to determine the corrosion rate and inhibition efficiency. Field emission scanning electron microscopy (FE-SEM) and atomic force spectroscopy (AFM) were used to investigate the surface morphology and topography of carbon steel after immersion in both uninhibited and inhibited media for 24 h. Fourier transform infrared spectroscopy (FTIR) was used to confirm the adsorption of ENAP inhibitor on the surface of the carbon steel. The results showed that the inhibition efficacy (IE%) reached 89.74 % when the corrosive solution was inhibited by 1200 ppm of ENAP at 298 K. The results also revealed a strong linear relationship between Cinh/θ and Cinh, which best fitted the Langmuir isotherm model. Thermodynamic and kinetic studies indicated that the ENAP inhibitor underwent physical adsorption on an energetically homogenous adsorbent surface. The apparent activation energies (Ea∗) of the inhibited process were higher compared to the uninhibited process at all concentrations. FE-SEM analysis showed significantly reduce in the corrosion of carbon steel in the 3.5 % NaCl inhibited by ENAP compared with free saline solution.
In this study, low cost biosorbent ̶inactive biomass (IB) granules (dp=0.433mm) taken from drying beds of Al-Rustomia Wastewater Treatment Plant, Baghdad-Iraq were used for investigating the optimum conditions of Pb(II), Cu(II), and Ni(II) biosorption from aqueous solutions. Various physico-chemical parameters such as initial metal ion concentration (50 to 200 mg/l), equilibrium time (0-180 min), pH (2-9), agitation speed (50-200 rpm), particles size (0.433 mm), and adsorbent dosage (0.05-1 g/100 ml) were studied. Six mathematical models describing the biosorption equilibrium and isotherm constants were tested to find the maximum uptake capacities: Langmuir, Freundlich, Redlich–Peterson, Sips, Khan, and Toth models. The best fit to the P
... Show MoreThe present paper deals with studying the effect of electrical discharge machining (EDM) and shot blast peening parameters on work piece fatigue lives using copper and graphite electrodes. Response surface methodology (RSM) and the design of experiment (DOE) were used to plan and design the experimental work matrices for two EDM groups of experiments using kerosene dielectric alone, while the second was treated by the shot blast peening processes after EDM machining. To verify the experimental results, the analysis of variance (ANOVA) was used to predict the EDM models for high carbon high chromium AISI D2 die steel. The work piece fatigue lives in terms of safety factors after EDM models were developed by FEM using ANSY
... Show MoreWe aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measure
The corrosion behavior of mild sleet in saturated aerated and de-aerated Ca(OH)2 solution was investigated using electrochemical measurements. The work was carried out with small coupons immersed in solutions containing different quantities of NaCl in presence of various NaN02 concentrations as corrosion inhibitors. It has been found thal:(1 ) In presence of NaCl, the time required to reach O2 evolution potential in de-aerated Ca(OH)2 polarized at 10μA/cm 2 is function of inhibitor concentration and it becomes lass as NaN02 increases compared with zero presence indicating the effectiveness of N
... Show MoreIn this research work a composite material was prepared contains a matrix which is unsaturated polyester resin (UPE) reinforced with carbon nanotube the percentage weight (0.1, 0.2, 0.4.0.5) %, and Zn particle the percentage weight (0.1, 0.2,0.4,0.5)%.
All sample were prepared by hand lay-up, process the mechanical tests contains hardness test, wear rate test, and the coefficient of thermal conductivity. The results showed a significant improvement in the properties of overlapping, Article containing carbon nano-tubes and maicroparticles of zinc because of its articles of this characteristics of high quality properties led to an, an increase in the coefficient of the rmalconductivity, and increase the hardness values with increased pe
The effects of shot peening treatment (SPT) were studied at (10,20, and 30) minutes on the rotating bending fatigue behavior and the behavior of the alloy steel DIN 41Cr4 vibrations. The hardness test, tensile test, constant amplitude fatigue tests, and the vibration measurements were performed on samples with and without cracks at room temperature (RT), also, the fracture surface was examined and analyzed by a Scanning Electron Microscope (SEM). The results of the investigations, for example, Stress to Number of cycles to failure (S-N) curves, fatigue strength improvement factor of 5% to 10%, the decreasing percentage of maximum Fast Fourier Transform (FFT) acceleration of the shot-peened condition were compared to untr
... Show More