Preferred Language
Articles
/
xBdleo4BVTCNdQwCYEnd
Analyzing Skewed Data with the Epsilon Skew Gamma distribution
...Show More Authors

A new distribution, the Epsilon Skew Gamma (ESΓ ) distribution, which was first introduced by Abdulah [1], is used on a near Gamma data. We first redefine the ESΓ distribution, its properties, and characteristics, and then we estimate its parameters using the maximum likelihood and moment estimators. We finally use these estimators to fit the data with the ESΓ distribution

Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Geological Journal
Evaluating Machine Learning Techniques for Carbonate Formation Permeability Prediction Using Well Log Data
...Show More Authors

Machine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To

... Show More
View Publication
Scopus (15)
Crossref (6)
Scopus Crossref
Publication Date
Wed Jan 01 2020
Journal Name
Advances In Science, Technology And Engineering Systems Journal
Bayes Classification and Entropy Discretization of Large Datasets using Multi-Resolution Data Aggregation
...Show More Authors

Big data analysis has important applications in many areas such as sensor networks and connected healthcare. High volume and velocity of big data bring many challenges to data analysis. One possible solution is to summarize the data and provides a manageable data structure to hold a scalable summarization of data for efficient and effective analysis. This research extends our previous work on developing an effective technique to create, organize, access, and maintain summarization of big data and develops algorithms for Bayes classification and entropy discretization of large data sets using the multi-resolution data summarization structure. Bayes classification and data discretization play essential roles in many learning algorithms such a

... Show More
View Publication
Scopus Crossref
Publication Date
Wed Feb 06 2013
Journal Name
Eng. & Tech. Journal
A proposal to detect computer worms (malicious codes) using data mining classification algorithms
...Show More Authors

Malicious software (malware) performs a malicious function that compromising a computer system’s security. Many methods have been developed to improve the security of the computer system resources, among them the use of firewall, encryption, and Intrusion Detection System (IDS). IDS can detect newly unrecognized attack attempt and raising an early alarm to inform the system about this suspicious intrusion attempt. This paper proposed a hybrid IDS for detection intrusion, especially malware, with considering network packet and host features. The hybrid IDS designed using Data Mining (DM) classification methods that for its ability to detect new, previously unseen intrusions accurately and automatically. It uses both anomaly and misuse dete

... Show More
Publication Date
Mon May 15 2017
Journal Name
Journal Of Theoretical And Applied Information Technology
Anomaly detection in text data that represented as a graph using dbscan algorithm
...Show More Authors

Anomaly detection is still a difficult task. To address this problem, we propose to strengthen DBSCAN algorithm for the data by converting all data to the graph concept frame (CFG). As is well known that the work DBSCAN method used to compile the data set belong to the same species in a while it will be considered in the external behavior of the cluster as a noise or anomalies. It can detect anomalies by DBSCAN algorithm can detect abnormal points that are far from certain set threshold (extremism). However, the abnormalities are not those cases, abnormal and unusual or far from a specific group, There is a type of data that is do not happen repeatedly, but are considered abnormal for the group of known. The analysis showed DBSCAN using the

... Show More
Preview PDF
Scopus (4)
Scopus
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
A Modified 2D-Checksum Error Detecting Method for Data Transmission in Noisy Media
...Show More Authors

In data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Aug 01 2015
Journal Name
Journal Of Engineering
Analytical Approach for Load Capacity of Large Diameter Bored Piles Using Field Data
...Show More Authors

An analytical approach based on field data was used to determine the strength capacity of large diameter bored type piles. Also the deformations and settlements were evaluated for both vertical and lateral loadings. The analytical predictions are compared to field data obtained from a proto-type test pile used at Tharthar –Tigris canal Bridge. They were found to be with acceptable agreement of 12% deviation.

               Following ASTM standards D1143M-07e1,2010, a test schedule of five loading cycles were proposed for vertical loads and series of cyclic loads to simulate horizontal loading .The load test results and analytical data of 1.95

... Show More
View Publication Preview PDF
Publication Date
Thu Jun 01 2023
Journal Name
Bulletin Of Electrical Engineering And Informatics
A missing data imputation method based on salp swarm algorithm for diabetes disease
...Show More Authors

Most of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B

... Show More
View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Fri Nov 05 2021
Journal Name
Review Of International Geographical Education Online
Measuring The Efficiency of The Departments of The College of Administration and Economics / University of Baghdad Using the Method of Data Envelopment Analysis (DEA), A Comparative Study
...Show More Authors

Publication Date
Fri Jan 01 2021
Journal Name
Review Of International Geographical Education Online
Measuring The Efficiency of The Departments of The College of Administration and Economics / University of Baghdad Using the Method of Data Envelopment Analysis (DEA), A Comparative Study
...Show More Authors

The research aims at the possibility of measuring the technical and scale efficiency (SE) of the departments of the College of Administration and Economics at the University of Baghdad for a period lasting 8 years, from the academic year 2013-2014 to 2018-2019 using the method of Applied Data Analysis with an input and output orientation to maintain the distinguished competitive position and try to identify weaknesses in performance and address them. Nevertheless, the research problem lies in diagnosing the most acceptable specializations in the labor market and determining the reasons for students’ reluctance to enter some departments. Furthermore, the (Win4DEAp) program was used to measure technical and scale efficiency (SE) and rely on

... Show More
Scopus
Publication Date
Thu Jul 01 2010
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
DISTRIBUTION OF HADJELIA TRUNCATA CREPLIN, 1825 (HABRONEMATIDAE,SPIRURIDEA) AMONG MEMBERS OF THE AVIAN FAMILY COLUMBIDAE IN AL-DIWANIYA PROVINCE, CENTRAL IRAQ
...Show More Authors

A total of 28 birds were examined to investigate about the distribution of the nematode Hadjelia truncata among some members of the avian family Columbidae in Al-Diwaniya Province, Central Iraq. The percentages of the infection rate with this nematode were 27.27, 37.5, 14.28 and 0 in Columba livia, C. palumbis, Streptopelia decaocto, and S. turtur respectively. Reporting Hadjelia truncata from Streptopelia decaocto constitutes a new host record.

View Publication Preview PDF