Preferred Language
Articles
/
xBdleo4BVTCNdQwCYEnd
Analyzing Skewed Data with the Epsilon Skew Gamma distribution
...Show More Authors

A new distribution, the Epsilon Skew Gamma (ESΓ ) distribution, which was first introduced by Abdulah [1], is used on a near Gamma data. We first redefine the ESΓ distribution, its properties, and characteristics, and then we estimate its parameters using the maximum likelihood and moment estimators. We finally use these estimators to fit the data with the ESΓ distribution

Crossref
Publication Date
Wed Aug 01 2018
Journal Name
Journal Of Economics And Administrative Sciences
A Study on Transportation Models in Their Minimum and Maximum Values with Applications of Real Data
...Show More Authors

The purpose of this paper is to apply different transportation models in their minimum and maximum values by finding starting basic feasible solution and finding the optimal solution. The requirements of transportation models were presented with one of their applications in the case of minimizing the objective function, which was conducted by the researcher as real data, which took place one month in 2015, in one of the poultry farms for the production of eggs

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun May 01 2011
Journal Name
Information Sciences
Design and implementation of a t-way test data generation strategy with automated execution tool support
...Show More Authors

View Publication
Scopus (68)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Fri Oct 01 2010
Journal Name
2010 Ieee Symposium On Industrial Electronics And Applications (isiea)
Distributed t-way test suite data generation using exhaustive search method with map and reduce framework
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Fri Apr 14 2023
Journal Name
Journal Of Big Data
A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications
...Show More Authors
Abstract<p>Data scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for</p> ... Show More
View Publication Preview PDF
Scopus (628)
Crossref (628)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Palestine Journal Of Mathematics
STATISTICAL PROPERTIES OF GENERALIZED EXPONENTIAL RAYLEIGH DISTRIBUTION
...Show More Authors

This paper demonstrates the construction of a modern generalized Exponential Rayleigh distribution by merging two distributions with a single parameter. The "New generalized Exponential-Rayleigh distribution" specifies joining the Reliability function of exponential pdf with the Reliability function of Rayleigh pdf, and then adding a shape parameter for this distribution. Finally, the mathematical and statistical characteristics of such a distribution are accomplished

View Publication Preview PDF
Scopus (5)
Scopus
Publication Date
Mon Apr 01 2019
Journal Name
2019 International Conference On Automation, Computational And Technology Management (icactm)
Multi-Resolution Hierarchical Structure for Efficient Data Aggregation and Mining of Big Data
...Show More Authors

Big data analysis is essential for modern applications in areas such as healthcare, assistive technology, intelligent transportation, environment and climate monitoring. Traditional algorithms in data mining and machine learning do not scale well with data size. Mining and learning from big data need time and memory efficient techniques, albeit the cost of possible loss in accuracy. We have developed a data aggregation structure to summarize data with large number of instances and data generated from multiple data sources. Data are aggregated at multiple resolutions and resolution provides a trade-off between efficiency and accuracy. The structure is built once, updated incrementally, and serves as a common data input for multiple mining an

... Show More
View Publication
Scopus (4)
Crossref (2)
Scopus Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
An Embedded Data Using Slantlet Transform
...Show More Authors

Data hiding is the process of encoding extra information in an image by making small modification to its pixels. To be practical, the hidden data must be perceptually invisible yet robust to common signal processing operations. This paper introduces a scheme for hiding a signature image that could be as much as 25% of the host image data and hence could be used both in digital watermarking as well as image/data hiding. The proposed algorithm uses orthogonal discrete wavelet transforms with two zero moments and with improved time localization called discrete slantlet transform for both host and signature image. A scaling factor ? in frequency domain control the quality of the watermarked images. Experimental results of signature image

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jun 19 2023
Journal Name
Journal Of Engineering
Data Classification using Quantum Neural Network
...Show More Authors

In this paper, integrated quantum neural network (QNN), which is a class of feedforward

neural networks (FFNN’s), is performed through emerging quantum computing (QC) with artificial neural network(ANN) classifier. It is used in data classification technique, and here iris flower data is used as a classification signals. For this purpose independent component analysis (ICA) is used as a feature extraction technique after normalization of these signals, the architecture of (QNN’s) has inherently built in fuzzy, hidden units of these networks (QNN’s) to develop quantized representations of sample information provided by the training data set in various graded levels of certainty. Experimental results presented here show that

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Mar 15 2018
Journal Name
Arab World English Journal
Pedagogical Stylistics as a Tool in the Classroom: An Investigation of EFL Undergraduate Students' Ability in Analyzing Poetic Language
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Thu Mar 01 2018
Journal Name
Arab World English Journal
Pedagogical Stylistics as a Tool in the Classroom: An Investigation of EFL Undergraduate Students' Ability in Analyzing Poetic Language
...Show More Authors

.