In cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Sliding Discrete Fourier Transform (SDFT) instead of the Fast Fourier Transform (FFT). To evaluate the performance, two versions of the proposed hybrid method are implemented, one with the FFT and the other with the SDFT. The proposed method is simulated for cooperative and non-cooperative scenarios and investigated under a multipath fading channel. Obtained results are evaluated by comparing them with other methods including: cyclostationary feature detection (CFD), energy detector and traditional hybrid. The simulation results show that the proposed method with the FFT and the SDFT successfully reduced the complexity by 20% and 40% respectively, when 60 sensing samples are used with an acceptable degradation in the detection performance. For instance, when Eb/N0 is 0 dB , the probability of the detection of Pd is decreased by 20 % and 10% by the proposed method with the FFT and the SDFT respectively, as compared with the hybrid method existing in the literature.
Thin films of bulk heterojunction blend Ni-Phthalocyanine
Tetrasulfonic acid tetrasodium salt and dpoly
(3, 4-ethylenedioxythiophene) poly (styrenesulfonate) (NiPcTs:
PEDOT: PSS) with different (PEDOT:PSS) concentrations (0.5, 1, 2)
are prepared using spin coating technique with thickness 100 nm on
glass and Si substrate. The X-Ray diffraction pattern of NiPcTs
powder was studied and compared with NiPc powder, the pattern
showed that the structure is a polycrystalline with monoclinic phase.
XRD analysis of as-deposited (NiPcTs/PEDOT:PSS) thin films
blends in dicated that the film appeared at(100), (102) in
concentrations (0.5, 1) and (100) in concentration (2). The grain size
is increased with increasing
Cognitive radios have the potential to greatly improve spectral efficiency in wireless networks. Cognitive radios are considered lower priority or secondary users of spectrum allocated to a primary user. Their fundamental requirement is to avoid interference to potential primary users in their vicinity. Spectrum sensing has been identified as a key enabling functionality to ensure that cognitive radios would not interfere with primary users, by reliably detecting primary user signals. In addition, reliable sensing creates spectrum opportunities for capacity increase of cognitive networks. One of the key challenges in spectrum sensing is the robust detection of primary signals in highly negative signal-to-noise regimes (SNR).In this paper ,
... Show MoreIn this research PbS thin film have been prepared by chemical bath deposition technique (CBD).The PbS film with thickness of (1-1.5)μm was thermally treated at temperature of 100°C for 4 hours. Some Structural characteristics was studied by using X-ray diffraction (XRD)and optical microscope photograph some of chemical gas sensing measurements were carried out ,it shown that the sensitivity of (CO2) gas depend on the grain Size and deposition substrate. The grain size of PbS film deposited on on glass closed to 21.4 nm while 37.97nm for Si substrate. The result of current-voltage characterization shwon the sensitivity of prepared film deposited on Si better than film on glass.
This paper describes the use of remote sensing techniques in verification of the polluted area in Diyala River and Tigris River and the effected of AL-Rustamiyah wastewater treatment plant, which is located on Diyala River, one of the branches of Tigris River in south of Baghdad. SPOT-5 a French satellite image of Baghdad, Iraq was used with ground resolution of 2.5 m in May 2016. ENVI 5.1 software programming was utilized for Image processing to assess the water pollution of Diyala and Tigris River’s water. Five regions were selected from a study area and then classified using the unsupervised ISODATA method. The results indicated that four classes of water quality which are successful in assessing and mapping water pollution which confi
... Show MoreThe study addressed the water ecosystems of the marshes of Maysan Governorate as one of the important areas in Iraq in terms of the environmental, economic and tourism aspects. This area was exposed to great environmental changes due to natural and human factors which greatly affected the water ecosystem and made the area susceptible to many problems that affected the biological life of living organisms. The marshes of Maysan Governorate was affected by vital factors and non-vital factors. The marshes of Maysan Governorate was characterized by the UN Organization as one of the most important centers of biodiversity in the world because of the abundance of different and rare living organisms such as birds, fish, and reptiles as well as the e
... Show MoreBaqubah city has grown extremely rapidly. The rate of growth exceeds the growth of services that must grow side by side with the growth of population. There are natural features that affect the growth of Baqubah city such as Dieyala river, Alssariya river, in addition to agricultural areas .All these natural features affect the growth of Baqubah city in the running form being seen . In this research the remote sensing and geographic information system (GIS) techniques are used for monitoring urban expansion and forecasting the probable axes to the growth of the city, and found that the probability of Baqubah growth to east is preferred due to Baqubah growth to the east would never interfere with natural features. Also in this res
... Show More