In cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Sliding Discrete Fourier Transform (SDFT) instead of the Fast Fourier Transform (FFT). To evaluate the performance, two versions of the proposed hybrid method are implemented, one with the FFT and the other with the SDFT. The proposed method is simulated for cooperative and non-cooperative scenarios and investigated under a multipath fading channel. Obtained results are evaluated by comparing them with other methods including: cyclostationary feature detection (CFD), energy detector and traditional hybrid. The simulation results show that the proposed method with the FFT and the SDFT successfully reduced the complexity by 20% and 40% respectively, when 60 sensing samples are used with an acceptable degradation in the detection performance. For instance, when Eb/N0 is 0 dB , the probability of the detection of Pd is decreased by 20 % and 10% by the proposed method with the FFT and the SDFT respectively, as compared with the hybrid method existing in the literature.
ZnO nanostructures were synthesized by hydrothermal method at different temperatures and growth times. The effect of increasing the temperature on structural and optical properties of ZnO were analyzed and discussed. The prepared ZnO nanostructures were characterized by X-ray diffraction (XRD), UV–Vis. absorption spectroscopy (UV–Vis.), Photoluminescence (PL), and scanning electron microscopy (SEM). In this work, hexagonal crystal structure prepared ZnO nanostructures was observed using X-ray diffraction (XRD) and the average crystallite size equal 14.7 and 23.8 nm for samples synthesized at growth time 7 and 8 hours respectively. A nanotubes-shaped surface morphology was found using scanning electron microscopy (SEM). The optic
... Show MoreIn this work, a method for the simultaneous spectrophotometric determination of zinc which was precipitated into deionized water that is in a commercial distribution systems PVC pipe, is proposed using UV-VIS Spectrophotometer. The method based on the reaction between the analytes Zn2+ and 2-carboxy-2-hyroxy-5-sulfoformazylbenze (Zincon) at an absorption maximum of 620nm at pH 9-10. This ligand is selective reagent. Since the complex is colored (blue), its stoichiometry can be established using visible spectrometry to measure the absorbance of solutions of known composition. The stoichiometry of the complex was determined by Job’s method and molar ratio method and found to be 1:2 (M: L). A series of synthetic solution containing different
... Show MoreThis paper sheds the light on the vital role that fractional ordinary differential equations(FrODEs) play in the mathematical modeling and in real life, particularly in the physical conditions. Furthermore, if the problem is handled directly by using numerical method, it is a far more powerful and efficient numerical method in terms of computational time, number of function evaluations, and precision. In this paper, we concentrate on the derivation of the direct numerical methods for solving fifth-order FrODEs in one, two, and three stages. Additionally, it is important to note that the RKM-numerical methods with two- and three-stages for solving fifth-order ODEs are convenient, for solving class's fifth-order FrODEs. Numerical exa
... Show MoreThis work used the deposition method to synthesize nickel oxide nanoparticles. The materials mainly used in this study were nickel sulfate hexahydrate (as a precursor) and NaOH (as a precipitant). The properties of the nanopowder were characterized by XRD, FE-SEM, EDX, and VSM. The obtained results confirmed the presence of nickel oxide nanoparticles with a face-centered cubic (FCC) structure with a lattice constant (a=4.17834 Å). Scherer and Williamson-Hall equations were used to calculate the crystallite size of about (30.5-35.5) nm. The FE-SEM images showed that the particle shape had a ball-like appearance with a uniform and homogeneous distribution and confirmed that the particles were within the nanoscale. The presence of oxygen a
... Show MoreThin films of BhSe3 have being deposited on glass substrates of
about 80 - 172 ± 14 nm thickness from an aqueous solution bath at temperature 293 K for period 0.5 to 6.0 hours using alchemical bath deposition method .
The films are characterized by X-ray diffraction, X-ray
florescent techniques and optical transmittance spectra measurements in the rang 350 - 400 nm at 293 K. And shows that as deposited films are amorphous and a transition to polycrystalline state has taken place after annealing them at 373 K, for 30 minutes, But they will be dan1aged
... Show MoreThe research started from the basic objective of tracking the reality of organizational excellence in educational organizations on the basis of practical application. The research in its methodology was based on the examination of organizational excellence in the way of evaluating institutional performance. Tikrit University was selected as a case study to study the reality of application to the dimensions of organizational excellence in it, The results of the analysis for ten periods during the year and month. For the accuracy of the test and its averages, it was preferable to use the T test to determine the significance of the results compared to the basic criteria.
The research found that there is an o
... Show MoreIn this paper, a new form of 2D-plane curves is produced and graphically studied. The name of my daughter "Noor" has been given to this curve; therefore, Noor term describes this curve whenever it is used in this paper. This curve is a form of these opened curves as it extends in the infinity along both sides from the origin point. The curve is designed by a circle/ ellipse which are drawing curvatures that tangent at the origin point, where its circumference is passed through the (0,2a). By sharing two vertical lined points of both the circle diameter and the major axis of the ellipse, the parametric equation is derived. In this paper, a set of various cases of Noor curve are graphically studied by two curvature cases;
... Show MoreThe influence of an aortic aneurysm on blood flow waveforms is well established, but how to exploit this link for diagnostic purposes still remains challenging. This work uses a combination of experimental and computational modelling to study how aneurysms of various size affect the waveforms. Experimental studies are carried out on fusiform-type aneurysm models, and a comparison of results with those from a one-dimensional fluid–structure interaction model shows close agreement. Further mathematical analysis of these results allows the definition of several indicators that characterize the impact of an aneurysm on waveforms. These indicators are then further studied in a computational model of a systemic blood flow network. This demonstr
... Show MoreA new efficient Two Derivative Runge-Kutta method (TDRK) of order five is developed for the numerical solution of the special first order ordinary differential equations (ODEs). The new method is derived using the property of First Same As Last (FSAL). We analyzed the stability of our method. The numerical results are presented to illustrate the efficiency of the new method in comparison with some well-known RK methods.