In cognitive radio system, the spectrum sensing has a major challenge in needing a sensing method, which has a high detection capability with reduced complexity. In this paper, a low-cost hybrid spectrum sensing method with an optimized detection performance based on energy and cyclostationary detectors is proposed. The method is designed such that at high signal-to-noise ratio SNR values, energy detector is used alone to perform the detection. At low SNR values, cyclostationary detector with reduced complexity may be employed to support the accurate detection. The complexity reduction is done in two ways: through reducing the number of sensing samples used in the autocorrelation process in the time domain and through using the Sliding Discrete Fourier Transform (SDFT) instead of the Fast Fourier Transform (FFT). To evaluate the performance, two versions of the proposed hybrid method are implemented, one with the FFT and the other with the SDFT. The proposed method is simulated for cooperative and non-cooperative scenarios and investigated under a multipath fading channel. Obtained results are evaluated by comparing them with other methods including: cyclostationary feature detection (CFD), energy detector and traditional hybrid. The simulation results show that the proposed method with the FFT and the SDFT successfully reduced the complexity by 20% and 40% respectively, when 60 sensing samples are used with an acceptable degradation in the detection performance. For instance, when Eb/N0 is 0 dB , the probability of the detection of Pd is decreased by 20 % and 10% by the proposed method with the FFT and the SDFT respectively, as compared with the hybrid method existing in the literature.
The northern region of Algeria is experiencing a real threat to the spatial extension of soil erosion. The Oued Bouhamdane watershed, part of this region, brings together all the natural and anthropogenic conditions that accelerate its degradation. This study is based on the use of remote sensing and GIS to map soil erosion in the Oued Bouhamdane watershed in north-eastern Algeria, using the Gavrilovic equation. The combination of data from different sources and field observation has made it possible to draw up a contextualized map of all the factors of soil erosion. Integrating the model into the GIS made it possible to give a first estimate of the annual volume of eroded soils, i.e., 14.57% of the total area of the Oued Bouham
... Show MoreThis study investigates data set as satellite images of type multispectral Landsat-7, which are observed for AL_Nasiriya city, it is located in southern of Iraq, and situated along the banks of the Euphrates River. These raw data are thermal bands of satellite images, they are taken as thermal images. These images are processed and examined using ENVI 5.3 program. Consequently, the emitted Hydrocarbon is extracted, and the black body algorithm is employed. As well as, the raster calculations are performed using ArcGIS, where gas and oil features are sorted. The results are estimate and determine the oil and gas fields in the city. This study uncovers, and estimates several unexplored oil and gas fields. Whereas,
... Show MoreWe prepared polythiophene (PTH) with single wall carbon nanotube (SWCNT) nanocomposite thin films for Nitrogen dioxide (NO2) gas sensing applications. Thin films were synthesized via electrochemical polymerization method onto (Indium tin oxide) ITO coated glass substrate of thiophene monomer with magnesium perchlorate and different concentration from SWCNT (0.012 and 0.016) % in the presence130mL of Acetonitrile used. X-ray diffraction (XRD), Field Emission Scanning Electron microscopy (FE-SEM), Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy (FT-IR) were used to characterized these nanocomposite thin films. The response of these nanocomposite for NO2 gas was evaluated via monitoring the change
... Show MoreEnvironmental pollutions and resources depletion motivates scientific research to innovate technologies for sustainable productive systems. To develop gas sensing substance with optimized performance a perovskite compound of HoxFe1-x FeO3 (where x= 0, 0.01, 0.03 and 0.05) were prepared by standard solid state reaction technique. The crystal structure was studied by XRD, which confirmed the formation of polycrystalline orthorhombic structure with space group Pbnm type perovskite. The preferred crystal growth of the main peak was (211). The structural parameters were also calculated and it was found that the lattice constants and particle size increased with the Ho doping ratio. The electrical properties were studied using the Hall effect,
... Show MoreThis study aims to demonstrate the morphotectonic evidence (drainage pattern, formations of sedimentary rocks, structural ridge deformations and spectral reflectance differences…etc.) for tectonic uplift with the syncline zone between two major anticlines, Kirkuk anticline in the northeast and Qara Chauq anticline in the southwest. The study area is located in the low folded zone at the geographical coordinates of 35º 45´ to 35º 55´ North and 43º 30´ to 44º 00´ East. In this study, the tectonic uplift was named as Dushwan uplift, because the uplift of the rocks was adjacent to Dushwan village.
The regional stress, originating from the collision of the Arabian plate with the E
... Show MoreThis paper presents a comparison between the electroencephalogram (EEG) channels during scoliosis correction surgeries. Surgeons use many hand tools and electronic devices that directly affect the EEG channels. These noises do not affect the EEG channels uniformly. This research provides a complete system to find the least affected channel by the noise. The presented system consists of five stages: filtering, wavelet decomposing (Level 4), processing the signal bands using four different criteria (mean, energy, entropy and standard deviation), finding the useful channel according to the criteria’s value and, finally, generating a combinational signal from Channels 1 and 2. Experimentally, two channels of EEG data were recorded fro
... Show MoreEnergy savings are very common in IoT sensor networks because IoT sensor nodes operate with their own limited battery. The data transmission in the IoT sensor nodes is very costly and consume much of the energy while the energy usage for data processing is considerably lower. There are several energy-saving strategies and principles, mainly dedicated to reducing the transmission of data. Therefore, with minimizing data transfers in IoT sensor networks, can conserve a considerable amount of energy. In this research, a Compression-Based Data Reduction (CBDR) technique was suggested which works in the level of IoT sensor nodes. The CBDR includes two stages of compression, a lossy SAX Quantization stage which reduces the dynamic range of the
... Show More