Preferred Language
Articles
/
xBd18ZIBVTCNdQwCV8PK
Eco-friendly and Secure Data Center to Detection Compromised Devices Utilizing Swarm Approach
...Show More Authors

Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the applying sigmoid fish swarm optimization (SiFSO) for early compromised device detection and subsequently alerting other network nodes. Additionally, our data center implements an innovative ant skyscape architecture (ASA) cooling mechanism, departing from traditional, unsustainable cooling strategies that harm the environment. To validate the effectiveness of these approaches, extensive simulations were conducted. The evaluations primarily revolved around the fish colony’s ability to detect compromised devices, focusing on source tracing, realistic modelling, and an impressive 98% detection accuracy rate under ASA cooling solution with 0.16 ºC within 1,300 second. Compromised devices pose a substantial risk to green data centers, as attackers could manipulate and disrupt network equipment. Therefore, incorporating cyber enhancements into the green data center concept is imperative to foster more adaptable and efficient smart networks.

Scopus Crossref
View Publication
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Processing of missing values in survey data using Principal Component Analysis and probabilistic Principal Component Analysis methods
...Show More Authors

The idea of ​​carrying out research on incomplete data came from the circumstances of our dear country and the horrors of war, which resulted in the missing of many important data and in all aspects of economic, natural, health, scientific life, etc.,. The reasons for the missing are different, including what is outside the will of the concerned or be the will of the concerned, which is planned for that because of the cost or risk or because of the lack of possibilities for inspection. The missing data in this study were processed using Principal Component  Analysis and self-organizing map methods using simulation. The variables of child health and variables affecting children's health were taken into account: breastfeed

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Aug 01 2012
Journal Name
International Journal Of Geographical Information Science
Assessing similarity matching for possible integration of feature classifications of geospatial data from official and informal sources
...Show More Authors

View Publication
Scopus (64)
Crossref (52)
Scopus Clarivate Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (57)
Crossref (29)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Open Veterinary Journal
Detection of biofilm formation and antibiotics resistance of Staphylococcus spp. isolated from humans’ and birds’ oral cavities
...Show More Authors

Background: Staphylococcus spp. are widely distributed in nature and can cause nosocomial, skin infections, and foodborne illness, and it may lead to severe financial losses in birds by causing systemic infection in numerous organs. Aim: This study was conducted to determine the prevalence of Staphylococcus spp. in humans and birds in Baghdad city. Methods: Seventy-six oral cavity swabs were collected, including 41 from birds and 35 from breeders. All samples were examined by bacteriological methods and identified by using the VITEK technique, the samples were then further studied to test the ability of biofilm formation, and MDR factors and MAR index were tested with the use of seven antibiotics. Results: Among the 76 oral swa

... Show More
View Publication
Scopus Clarivate Crossref
Publication Date
Sat Jan 12 2013
Journal Name
Pierb
RADAR SENSING FEATURING BICONICAL ANTENNA AND ENHANCED DELAY AND SUM ALGORITHM FOR EARLY-STAGE BREAST CANCER DETECTION
...Show More Authors

A biconical antenna has been developed for ultra-wideband sensing. A wide impedance bandwidth of around 115% at bandwidth 3.73-14 GHz is achieved which shows that the proposed antenna exhibits a fairly sensitive sensor for microwave medical imaging applications. The sensor and instrumentation is used together with an improved version of delay and sum image reconstruction algorithm on both fatty and glandular breast phantoms. The relatively new imaging set-up provides robust reconstruction of complex permittivity profiles especially in glandular phantoms, producing results that are well matched to the geometries and composition of the tissues. Respectively, the signal-to-clutter and the signal-to-mean ratios of the improved method are consis

... Show More
Publication Date
Sun Jan 01 2017
Journal Name
Current Research In Microbiology And Biotechnology
Immunological and molecular detection of Helicobacter pylori in patients clinically diagnosed with chronic urticarial and atopic dermatitis
...Show More Authors

To determine the relationship between Helicobacter pylori infection and skin disorders, sixty six patients who suffering from skin diseases include chronic urticarial (CU) and atopic dermatitis (AD) who attended at Dermatological Clinic/ Al-Numan Teaching Hospital from the beginning of October 2015 to the end of January 2016 with age (6-62) have been investigated and compared to twenty two samples of apparently healthy individuals were studied as control group. All the studied groups were subjected to measurement of antiHelicobacter pylori IgG antibodies by enzyme linked immuno sorbent assay (ELISA) and detection of 16S rRNA and CagA genes by using singleplex and multiplex PCR methods. The results of current study revealed that there was a

... Show More
Publication Date
Sat Feb 01 2014
Journal Name
World Journal Of Pharmaceutical Sciences
Detection of JAK2V617F Mutation and Serum Levels of Alkaline Phosphatase and Lactate Dehydrogenase in Chronic Myelogenous Leukemia.
...Show More Authors

Chronic myelogenous leukemia (CML) is a myeloproliferative neoplasm arises from Bcr-Abl gene translocation (called Ph chromosome) in hematopoietic stem cells (HSCs). This genetic abnormality results in constitutive activation of tyrosine kinase and subsequent uncontrol growth and multiplication of granulocytes. The cornerstone in treatment of CML are tyrosine kinase inhibitors, of which imatinib is the most effectively used. JAK2V617F mutation is an acquired single nucleotide polymorphism (SNP) occurs in JAK2 gene and is associated with many hematological malignancy other than CML. It was thought that the two genetic abnormalities (Bcr-Abl and JAK2V617F) occur mutually; however, growing body of evidences suggested the reverse. This study a

... Show More
Preview PDF
Publication Date
Wed May 10 2023
Journal Name
Journal Of Engineering
Damage Detection and Assessment of Stiffness and Mass Matrices in Curved Simply Supported Beam Using Genetic Algorithm
...Show More Authors

In this study, a genetic algorithm (GA) is used to detect damage in curved beam model, stiffness as well as mass matrices of the curved beam elements is formulated using Hamilton's principle. Each node of the curved beam element possesses seven degrees of freedom including the warping degree of freedom. The curved beam element had been derived based on the Kang and Yoo’s thin-walled curved beam theory. The identification of damage is formulated as an optimization problem, binary and continuous genetic algorithms
(BGA, CGA) are used to detect and locate the damage using two objective functions (change in natural frequencies, Modal Assurance Criterion MAC). The results show the objective function based on change in natural frequency i

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Dec 01 2017
Journal Name
Rawaa Emad Jaloud And Fadia Falahfadia Falah
Isolation and Identification of Fungal Propagation in Iraqi Meat and Detection of Aflatoxin B1 Using ELISA Technique
...Show More Authors

Scopus (5)
Scopus
Publication Date
Sun Mar 31 2024
Journal Name
Iraqi Geological Journal
Permeability Prediction and Facies Distribution for Yamama Reservoir in Faihaa Oil Field: Role of Machine Learning and Cluster Analysis Approach
...Show More Authors

Empirical and statistical methodologies have been established to acquire accurate permeability identification and reservoir characterization, based on the rock type and reservoir performance. The identification of rock facies is usually done by either using core analysis to visually interpret lithofacies or indirectly based on well-log data. The use of well-log data for traditional facies prediction is characterized by uncertainties and can be time-consuming, particularly when working with large datasets. Thus, Machine Learning can be used to predict patterns more efficiently when applied to large data. Taking into account the electrofacies distribution, this work was conducted to predict permeability for the four wells, FH1, FH2, F

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref