Modern civilization increasingly relies on sustainable and eco-friendly data centers as the core hubs of intelligent computing. However, these data centers, while vital, also face heightened vulnerability to hacking due to their role as the convergence points of numerous network connection nodes. Recognizing and addressing this vulnerability, particularly within the confines of green data centers, is a pressing concern. This paper proposes a novel approach to mitigate this threat by leveraging swarm intelligence techniques to detect prospective and hidden compromised devices within the data center environment. The core objective is to ensure sustainable intelligent computing through a colony strategy. The research primarily focusses on the applying sigmoid fish swarm optimization (SiFSO) for early compromised device detection and subsequently alerting other network nodes. Additionally, our data center implements an innovative ant skyscape architecture (ASA) cooling mechanism, departing from traditional, unsustainable cooling strategies that harm the environment. To validate the effectiveness of these approaches, extensive simulations were conducted. The evaluations primarily revolved around the fish colony’s ability to detect compromised devices, focusing on source tracing, realistic modelling, and an impressive 98% detection accuracy rate under ASA cooling solution with 0.16 ºC within 1,300 second. Compromised devices pose a substantial risk to green data centers, as attackers could manipulate and disrupt network equipment. Therefore, incorporating cyber enhancements into the green data center concept is imperative to foster more adaptable and efficient smart networks.
Some new cyclic imides are prepared by the reaction of ampicillin drug with different cyclic anhydrides as a first step to form amic acids for ampicillin drug. The second step includes the reaction of prepared amic acids with acetic anhydride and anhydrous sodium acetate with heating in THF as a solvent to give cyclic imide compounds. These compounds are identified by melting points, FT-IR, 1H-NMR, and biological activity
Background: Bladder cancer (BC) is the most common malignant tumor in the urinary tract and the tenth most common malignancy worldwide. Exosomes are 40–100 nm-diameter nanovesicles that are either released straight from the plasma membrane during budding or merged with the plasma membrane by multivesicular bodies. Objectives: To assess the proportion of serum and urinary Exosome levels in urinary bladder cancer patients, as well as their impact on the disease. Methods: From January 2023 to June 2023, a total of 45 samples of blood and urine were collected from individuals diagnosed with bladder cancer at the Ghazi Hariri Hospital for Specialized Surgery. They included 45 male and female patients, varying in age, as well as 45 heal
... Show More4-[(2-hydroxy-4,6-dimethylphenyl)diazenyl]-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one has been readied by combination the diazonium salt of 4-aminoantipyrine with 3,5-dimethylphenol. Spectral studies ( FTIR, UV-Vis, 1H and 13CNMR) and microelemental analysis (C.H.N) are use to identified of the ligand. Complexes of some transition metals were performed as well depicted. The formation of complexes were characterized by using atomic absorption of flame, elemental analysis, infrared and UV-Vis spectral process as well conductivity and magnetic quantifications. Nature of compounds produced have been studied followed the mole ratio and continuous contrast methods, Beer's law followed during a concentration scope (1×10-4 - 3×10-4 M/L). height m
... Show MoreThe aim of the research is to study the comparison between (ARIMA) Auto Regressive Integrated Moving Average and(ANNs) Artificial Neural Networks models and to select the best one for prediction the monthly relative humidity values depending upon the standard errors between estimated and observe values . It has been noted that both can be used for estimation and the best on among is (ANNs) as the values (MAE,RMSE, R2) is )0.036816,0.0466,0.91) respectively for the best formula for model (ARIMA) (6,0,2)(6,0,1) whereas the values of estimates relative to model (ANNs) for the best formula (5,5,1) is (0.0109, 0.0139 ,0.991) respectively. so that model (ANNs) is superior than (ARIMA) in a such evaluation.
Providing useful information in estimating the amount and timing and the degree of uncertainty concerning the future cash flows is one of the three main objectives of the financial reporting system, which is done through the main financial statements. The interest on standard-setting bodies in the forecasting of future cash flows, especially Financial Accounting Standards Board (FASB) explain under Accounting Standard (1) of the year 1978 "Objectives of Financial Reporting by Business Enterprises", paragraph (37) thereof that accounting profits better than cash flows when forecasting future cash flows, In contrast, IAS (7) as amended in 1992 aims to compel economic units to prepare statement of c
... Show More