The present study combines UV-Vis spectrophotometry and dispersive liquid-liquid microextraction (DLLME) for the preconcentration and determination of trace level clidinium bromide (Clid) in pharmaceutical preparation and real samples. The method is based on ion-pair formation between Clid and bromocresol green in aqueous solution using citrate buffer (pH = 3). The colored product was first extracted using a mixture of 800 µL acetonitrile and 300 µL chloroform solvents. Then, a spectrophotometric measurement of sediment phase was performed at λ = 420 nm. The important parameters affecting the efficiency of DLLME were optimized. Under the optimum conditions, the calibration graphs of standard -1 (Std.), drug, urine and serum were ranged 0.005 - 0.16 µg mL . The limits of detection, quantification, and Sandell's sensitivity were calculated. Good recoveries of Clid Std., drug, urine and serum at 0.005, 0.01, -1 0.1 and 0.16 µg mL ranged 93.77 - 101.0%. Enrichment factor was calculated for Std., drug, urine and serum. The method was applied successfully to determine Clid in pharmaceutical preparation and real samples.
Bladder cancer (BC) is the predominant malignant neoplasm in the urinary system and ranks as the tenth most prevalent malignant tumor worldwide. Compared with females, males displayed a four-fold more common incidence of bladder cancer. It mainly affects men. Bladder cancer is the fourth most prevalent neoplasm in males. The most important protein that makes up high density lipoprotein (HDL), ApoA-I apolipoprotein A1 is essential in regulating the right amount of cholesterol. Multiple inquiries have demonstrated that APOA1 plays a pivotal role in the progression, infiltration, and spread of tumors. Objectives. The objective of this study was to measure the level of urine to serum apolipoprotein A1 in patients suffering from bladder
... Show MoreSimple, cheap, sensitive, and accurate kinetic- spectrophotometric method has been developed for the determination of naringenin in pure and supplements formulations. The method is based on the formation of Prussian blue. The product dye exhibits a maximum absorbance at 707 nm. The calibration graph of naringenin was linear over the range 0.3 to 10 µg ml-1 for the fixed time method (at 15 min) with a correlation coefficient (r) and percentage linearity (r2%) were of 0.9995 and 99.90 %, respectively, while the limit of detection LOD was 0.041 µg ml-1. The method was successfully applied for the determination of naringenin in supplements with satisfac
... Show MoreA simple, new, and sensitive spectrophotometric technique for the determination of methyldopa was presented in this research article. The suggested technique includes reacting metoclopramide with NaNO2 in the presence of hydrochloric acid to produce diazonium salt, and then the drug methyldopa reacts with the diazonium salt to produce a yellow azo dye. The maximum wavelength of the dye was 458 nm. This method is effectively used for the determination of methyldopa in different pharmaceutical formulations. It has been found that there are no significant interactions between common excipients and pure methyldopa. The results were processed statistically, and compared with those obtained from officially approved methods, they were found to be
... Show MoreSimple and sensitive kinetic methods are developed for the determination of Paracetamol in pure form and in pharmaceutical preparations. The methods are based on direct reaction (oxidative-coupling reaction) of Paracetamol with o-cresol in the presence of sodium periodate in alkaline medium, to form an intense blue-water-soluble dye that is stable at room temperature, and was followed spectrophotometriclly at λmax= 612 nm. The reaction was studied kinetically by Initial rate and fixed time (at 25 minutes) methods, and the optimization of conditions were fixed. The calibration graphs for drug determination were linear in the concentration ranges (1-7 μg.ml-1) for the initial rate and (1-10 μg.ml-1) for the fixed time methods at 25 min.
... Show MoreIn the present study twenty samples of human urine were taken
from healthy male and female with different of: ages, occupation and
place of residence. These samples were collected from the hospital to
measure the concentration of radon gas in human urine by using one
of solid state nuclear track detectors LR-115.
The results obtained of the concentrations of radon in healthy human
urine are varying from 2.12×10-3 Bq.l-1 to 4.42×10-3 Bq.l-1 and
these values are less than the allowed limits 12.3×10-3 Bq.l-1.
Copper (Cu) Zinc (Zn) and Magnesium (Mg) in serum, RBC, urine and dialyzate fluids were
studied in 39 patients, who have been undergoing chronic haemodialysis treatment. They were
divided in to polyuric , oliguric and anuric depending on their urinary output. Elevated serum and
RBC Mg was observed before dialysis, while decreased serum and RBC level was noticed except
serum Mg of polyuric patients. Before dialysis elevated serum and RBC Zn were observed. While
after dialysis these parameters were increased. Normal RBC Cu value before dialysis was observed.
While low serum Cu was noticed. After dialysis serum Cu showed raised value, while RBC level
decreased in oliguric and increased in polyuric patients. Zn / Cu rati
Chromatographic and spectrophotometric methods for the estimation of mebendazole in
pharmaceutical products were developed. The flow injection method was based on the oxidation of
mebendazole by a known excess of sodium hypochlorite at pH=9.5. The excess sodium hypochlorite is then
reacted with chloranilic acid (CAA) to bleach out its color. The absorbance of the excess CAA was recorded
at 530 nm. The method is fast, simple, selective, and sensitive. The chromatographic method was carried out
on a Varian C18 column. The mobile phase was a mixture of acetonitrile (ACN), methanol (MeOH), water
and triethylamine (TEA), (56% ACN, 20% MeOH, 23.5% H2O, 0.5% TEA, v/v), adjusted to pH = 3.0 with
1.0 M hy
It is generally accepted that there are two spectrophotometric techniques for quantifying ceftazidime (CFT) in bulk medications and pharmaceutical formulations. The methods are described as simple, sensitive, selective, accurate and efficient techniques. The first method used an alkaline medium to convert ceftazidime to its diazonium salt, which is then combined with the 1-Naphthol (1-NPT) and 2-Naphthol (2-NPT) reagents. The azo dye that was produced brown and red in color with absorption intensities of ƛmax 585 and 545nm respectively. Beer's law was followed in terms of concentration ranging from (3-40) µg .ml-1 For (CFT-1-NPT) and (CFT-2-NPT), the detection limits were 1.0096 and 0.8017 µg.ml-1, respec
... Show MoreNew, easy, simple, and fast spectral method for estimation of sulfamethoxazole (SMZ) in pure and pharmaceutical forms. The proposed method is based on the azotization of the drug compound by sodium nitrite in an acidic medium and then coupling with 2,3dimethyl phenol reagent (DMP) in a basic medium to yield an orange-coloured dye which shows λmax at 402 nm. Different affection of the optimization reaction has been completed, following the classical univariate sequence. The concentration of sulfamethoxazole about (1-15) μg. mL-1 with molar absorptivity of (14943.461) L.mol1 .cm-1 that obeyed Beer’s law. The detection and quantification limits were (0.852, 2.583) μg. mL-1 respectively, while the value of Sandell’s sensitivity (
... Show MoreA simple, and rapid spectrophotometric method for the estimation of paracetamol has been developed. The methods is based on diazotisation of 2,4-dichloroaniline followed by a coupling reaction with paracetamol in sodium hydroxide medium. All variables affecting the reaction conditions were carefully studied. Beer's law is obeyed in the concentration range of 4-350 ?gml?1 at 490 nm .The method is successfully employed for the determination of paracetamol in pharmaceutical preparations. No interferes observed in the proposed method. Analytical parameters such as accuracy and precision have been established for the method and evaluated statistically to assess the application of the method.