The present study combines UV-Vis spectrophotometry and dispersive liquid-liquid microextraction (DLLME) for the preconcentration and determination of trace level clidinium bromide (Clid) in pharmaceutical preparation and real samples. The method is based on ion-pair formation between Clid and bromocresol green in aqueous solution using citrate buffer (pH = 3). The colored product was first extracted using a mixture of 800 µL acetonitrile and 300 µL chloroform solvents. Then, a spectrophotometric measurement of sediment phase was performed at λ = 420 nm. The important parameters affecting the efficiency of DLLME were optimized. Under the optimum conditions, the calibration graphs of standard -1 (Std.), drug, urine and serum were ranged 0.005 - 0.16 µg mL . The limits of detection, quantification, and Sandell's sensitivity were calculated. Good recoveries of Clid Std., drug, urine and serum at 0.005, 0.01, -1 0.1 and 0.16 µg mL ranged 93.77 - 101.0%. Enrichment factor was calculated for Std., drug, urine and serum. The method was applied successfully to determine Clid in pharmaceutical preparation and real samples.
Background: Lateral sinus augmentation and simultaneous insertion of dental implants is a highlypredictable procedure and associated with high rate of implants success.Aims: To evaluate implant stability changes following maxillary sinus augmentation utilizing deproteinizedbovine bone alone or mixed with platelet-rich fibrin.Materials and Methods: A total of 34 lateral sinus augmentation procedures were performed and 50 dentalimplants simultaneously installed. The lateral sinus augmentation cases were allocated randomly into 3groups: Group A comprised 13 procedures and 21 dental implants utilizing solely deproteinized bovine bone.Group B involved 10 cases and 16 dental implants using deproteinized bovine bone mixed with leukocyteand
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreCase Report.
To present a case of a previous complicated mandibular orthognathic surgery that aimed to setback the mandible in a female cleft lip and palate (CLP) patient, which led to bone necrosis on one side with subsequent severe mandibular deviation and facial asymmetry. We additionally reviewed the previous reports of similar complications, the pathophysiology and the factors that could lead to this dreadful result.
A 27-year-old female patient presented with a severe dentofacial deformity secondary to a complicated bilateral sagittal spli
The CuInSe2 (CIS) nanocrystals are synthesized by arrested precipitation from molecular precursors are added to a hot solvent with organic cap- ping ligands to control nanocrystal formation and growth. CIS thin films deposited onto glass substrate by spray - coating, then selenized in Ar- atmosphere to form CIS thin films. PVs were made with power conversion efficiencies of 0.631% as -deposited and 0.846% after selenization, for Mo coated, under AM 1.5 illumination. X-ray diffraction (XRD) and energy dispersive spectroscopy (EDS) analysis it is evident that CIS have the chalcopyrite structure as the major phase with a preferred orientation along (112) direction and the atomic ratio of Cu : In : Se in the nanocrystals is nearly 1 : 1 : 2
Deep learning has recently received a lot of attention as a feasible solution to a variety of artificial intelligence difficulties. Convolutional neural networks (CNNs) outperform other deep learning architectures in the application of object identification and recognition when compared to other machine learning methods. Speech recognition, pattern analysis, and image identification, all benefit from deep neural networks. When performing image operations on noisy images, such as fog removal or low light enhancement, image processing methods such as filtering or image enhancement are required. The study shows the effect of using Multi-scale deep learning Context Aggregation Network CAN on Bilateral Filtering Approximation (BFA) for d
... Show MoreThe search included a comparison between two etchands for etch CR-39 nuclear track detector, by the calculation of bulk etch rate (Vb) which is one of the track etching parameters, by two measuring methods (thichness and change mass). The first type, is the solution prepared from solving NaOH in Ethanol (NaOH/Ethanol) by varied normalities under temperature(55˚C)and etching time (30 min) then comparated with the second type the solution prepared from solving NaOH in water (NaOH/Water) by varied normalities with (70˚C) and etching time (60 min) . All detectors were irradiated with (5.48 Mev) α-Particles from an 241Am source in during (10 min). The results that Vb would increase with the increase of
... Show MoreTime-domain spectral matching commonly used to define seismic inputs to dynamic analysis in terms of acceleration time history compatible with a specific target response spectrum is used in this study to investigate the second-order geometric effect of P-delta on the seismic response of base-isolated high-rise buildings. A synthetic time series is generated by adjusting reference time series that consist of available readings from a past earthquake of the 1940 El Centro earthquake adopted as an initial time series. The superstructure of a 20-story base isolated building is represented by a 3-D finite element model using ETABS software. The results of the base isolated building show that base isolation technique significantly reduces inter-s
... Show MoreMany consumers of electric power have excesses in their electric power consumptions that exceed the permissible limit by the electrical power distribution stations, and then we proposed a validation approach that works intelligently by applying machine learning (ML) technology to teach electrical consumers how to properly consume without wasting energy expended. The validation approach is one of a large combination of intelligent processes related to energy consumption which is called the efficient energy consumption management (EECM) approaches, and it connected with the internet of things (IoT) technology to be linked to Google Firebase Cloud where a utility center used to check whether the consumption of the efficient energy is s
... Show More