Preferred Language
Articles
/
xBZafowBVTCNdQwCMfxf
Removal of <scp>E133</scp> brilliant blue dye from artificial wastewater by electrocoagulation using cans waste as electrodes
...Show More Authors
Abstract<p>Solid‐waste management, particularly of aluminum (Al), is a challenge that is being confronted around the world. Therefore, it is valuable to explore methods that can minimize the exploitation of natural assets, such as recycling. In this study, using hazardous Al waste as the main electrodes in the electrocoagulation (EC) process for dye removal from wastewater was discussed. The EC process is considered to be one of the most efficient, promising, and cost‐effective ways of handling various toxic effluents. The effect of current density (10, 20, and 30 mA/cm<sup>2</sup>), electrolyte concentration (1 and 2 g/L), and initial concentration of Brilliant Blue dye (15 and 30 mg/L) on the efficiency of the EC process were examined in this study. The results show that removal efficiency increased with current density and sodium chloride (NaCl) concentration and decreased with initial dye concentration. The electrical power and electrodes consumed increased with an increase in current density and decreased notably with increased NaCl. The optimum current density and amount of NaCl were 20 mA/cm<sup>2</sup> and 2 g/L, respectively to attain highest values of E133 brilliant blue dye removal. The EC process was examined using adsorption isotherms and kinetics models. Those results showed that the Langmuir isotherm matched the experimental data. Furthermore, the experimental data were followed the Elovich model kinetics.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Removal of Cu2+, Pb2+ , And Ni 2+ Ions From Simulated Waste Water By Ion Exchange Method On Zeolite And Purolite C105 Resin
...Show More Authors

The removal of heavy metal ions from wastewater by ion exchange resins ( zeolite and purolite C105), was investigated. The adsorption process, which is pH dependent, shows maximum removal of metal ions at pH 6 and 7 for zeolite and purolite C105 for initial metal ion
concentrations of 50-250 mg/l, with resin dose of 0.25-3 g. The maximum ion exchange capacity was found to be 9.74, 9.23 and 9.71 mg/g for Cu2+, Pb2+, and Ni2+ on zeolite respectively, while on purolite C105 the maximum ion exchange capacity was found to be 9.64 ,8.73 and 9.39 for Cu2+, Pb2+, and Ni2+ respectively. The maximum removal was 97-98% for Cu2+ and Ni2+ and 92- 93% for Pb2+ on zeolite, while it was 93-94% for Cu2+, 96-97% for Ni2+, and 87-88% for Pb2+ on puroli

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Wed Sep 17 2014
Journal Name
African Journal Of Microbiology Research
Xylanase production using fruit waste as cost effective carbon source from thermo-tolerant Bacillus megaterium
...Show More Authors

View Publication
Crossref (5)
Crossref
Publication Date
Fri May 15 2020
Journal Name
Egyptian Journal Of Chemistry
Application of Response Surface Methodology for Optimization of Phenol Removal from Simulated Wastewater using Rotating Tubular Packed bed Electrochemical Reactor
...Show More Authors

View Publication
Scopus (4)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Sep 20 2023
Journal Name
Environmental Progress &amp; Sustainable Energy
Production and characterization of composite activated carbon from potato peel waste for cyanide removal from aqueous solution
...Show More Authors
Abstract<p>This research presents a response surface methodology (RSM) with I‐optimal method of DESIGN EXPERT (version 13 Stat‐Ease) for optimization and analysis of the adsorption process of the cyanide from aqueous solution by activated carbon (AC) and composite activated carbon (CuO/AC) produced by pyro carbonic acid microwave using potato peel waste as raw material. Pyrophosphate 60% (wt) was used for impregnation with an impregnation ratio 3:1, impregnation time of 4 h at 25°C, radiant power of 700 W, and activation time of 20 min. Batch experiments were conducted to determine the removal efficiency of cyanide from aqueous solution to evaluate the influences of various experimental parameters su</p> ... Show More
View Publication
Scopus (8)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Reducing the Pollutants from Municipal Wastewater by Chlorella Vulgaris Microalgae
...Show More Authors

In the present work, the pollutants of the municipal wastewater are reduced using Chlorella vulgaris microalgae. The pollutants that were treated are: Total organic carbon (TOC), Chemical oxygen demand (COD), Nitrate (NO3), and Phosphate (PO4). Firstly, the treatment was achieved at atmospheric conditions (Temperature = 25oC), pH 7 with time (1 – 48 h). To study the effect of other microorganisms on the reduction of pollutants, sterilized wastewater and unsterilized wastewater were used for two types of packing (cylindrical plastic and cubic polystyrene) as well as algae's broth (without packing), where the microalgae are grown on the packing then transported to the wastewater for treatment. Th

... Show More
View Publication Preview PDF
Crossref (5)
Crossref
Publication Date
Sun Dec 31 2000
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Removal of Phenol from Water by Adsorption
...Show More Authors

View Publication Preview PDF
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Hydrogen Energy
Improvement of photofermentative biohydrogen production using pre-treated brewery wastewater with banana peels waste
...Show More Authors

View Publication
Scopus (64)
Crossref (62)
Scopus Clarivate Crossref
Publication Date
Tue Jan 31 2017
Journal Name
Journal Of Engineering
Studying the Adsorption of Lead from aqueous Solution using Local Adsorbent Material Produced from Waste Tires by Pyrolysis
...Show More Authors

In this research a local adsorbent was prepared from waste tires using two-step pyrolysis method. In the carbonization process, nitrogen gas flow rate was 0.2L/min at carbonization temperature of 500ºC for 1h. The char products were then preceded to the activation process at 850°C under carbon dioxide (CO2) activation flow rate of 0.6L/min for 3h. The activation method produced local adsorbent material with a surface area and total pore volume as high as 118.59m2 /g and 0.1467cm3/g, respectively. The produced . local adsorbent (activated carbon) was used for adsorption of lead from aqueous solution. The continuous fixed bed column experiments were conducted. The adsorption capacity performance of prepared activated carbons in this work

... Show More
View Publication Preview PDF
Publication Date
Tue Aug 01 2023
Journal Name
Journal Of Ecological Engineering
Assessment of the Pressure Driven Membrane for the Potential Removal of Aniline from Wastewater
...Show More Authors

View Publication
Scopus (6)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Mar 30 2019
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Adsorption of Phenol from Aqueous Solution using Paper Waste
...Show More Authors

The exploitation of obsolete recyclable resources including paper waste has the advantages of saving resources and environment protection. This study has been conducted to study utilizing paper waste to adsorb phenol which is one of the harmful organic compound byproducts deposited in the environment. The influence of different agitation methods, pH of the solution (3-11), initial phenol concentration (30-120ppm), adsorbent dose (0.5-2.5 g) and contact time (30-150 min) were studied. The highest phenol removal efficiency obtained was 86% with an adsorption capacity of 5.1 mg /g at optimization conditions (pH of 9, initial phenol concentration of 30 mg/L, an adsorbent dose of 2 g and contact time of 120min and at room temperature).

... Show More
View Publication Preview PDF
Crossref (5)
Crossref