Preferred Language
Articles
/
xBYjvooBVTCNdQwCeqRa
Modelling Dynamic Patterns Using Mobile Data
...Show More Authors

Crossref
View Publication
Publication Date
Tue Oct 01 2013
Journal Name
Proceedings Of The International Astronomical Union
The infrared <i>K</i>-band identification of the DSO/G2 source from VLT and Keck data
...Show More Authors
Abstract<p>A fast moving infrared excess source (G2) which is widely interpreted as a core-less gas and dust cloud approaches Sagittarius A* (Sgr A*) on a presumably elliptical orbit. VLT <italic>K<sub>s</sub></italic>-band and Keck <italic>K</italic>′-band data result in clear continuum identifications and proper motions of this ∼19<sup><italic>m</italic></sup> Dusty S-cluster Object (DSO). In 2002-2007 it is confused with the star S63, but free of confusion again since 2007. Its near-infrared (NIR) colors and a comparison to other sources in the field speak in favor of the DSO being an IR excess star with photospheric continuum emission at 2 microns than a</p> ... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Mon Oct 31 2022
Journal Name
Biodiversitas Journal Of Biological Diversity
Identification of new species record of Cyanophyceae in Diyala River, Iraq based on 16S rRNA sequence data
...Show More Authors

Abstract. Hassan FM, Mahdi WM, Al-Haideri HH, Kamil DW. 2022. Identification of new species record of Cyanophyceae in Diyala River, Iraq based on 16S rRNA sequence data. Biodiversitas 23: 5239-5246. The biodiversity and water quality of the Diyala River require screening water in terms of biological contamination, because it is the only water source in Diyala City and is used for many purposes. This study aimed to identify a new species record of Cynaophyceae and emphasize the importance of using molecular methods beside classic morphological approaches, particularly in the water-shrinkage-aqua system. Five different sites along Diyala River were selected for Cyanophyceae identification. Morphological examination and 16S rRNA sequen

... Show More
View Publication
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Thu Sep 29 2022
Journal Name
World Journal Of Clinical Infectious Diseases
Five-year retrospective hospital-based study on epidemiological data regarding human leishmaniasis in West Kordofan state, Sudan
...Show More Authors

View Publication
Crossref (2)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Baghdad Science Journal
Comparing Weibull Stress – Strength Reliability Bayesian Estimators for Singly Type II Censored Data under Different loss Functions
...Show More Authors

     The stress(Y) – strength(X) model reliability Bayesian estimation which defines life of a component with strength X and stress Y (the component fails if and only if at any time the applied stress is greater than its strength) has been studied, then the reliability; R=P(Y<X), can be considered as a measure of the component performance. In this paper, a Bayesian analysis has been considered for R when the two variables X and Y are independent Weibull random variables with common parameter α in order to study the effect of each of the two different scale parameters β and λ; respectively, using three different [weighted, quadratic and entropy] loss functions under two different prior functions [Gamma and extension of Jeffery

... Show More
View Publication Preview PDF
Scopus (3)
Scopus Clarivate Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Robust M Estimate With Cubic Smoothing Splines For Time-Varying Coefficient Model For Balance Longitudinal Data
...Show More Authors

In this research، a comparison has been made between the robust estimators of (M) for the Cubic Smoothing Splines technique، to avoid the problem of abnormality in data or contamination of error، and the traditional estimation method of Cubic Smoothing Splines technique by using two criteria of differentiation which are (MADE، WASE) for different sample sizes and disparity levels to estimate the chronologically different coefficients functions for the balanced longitudinal data which are characterized by observations obtained through (n) from the independent subjects، each one of them is measured repeatedly by group of  specific time points (m)،since the frequent measurements within the subjects are almost connected an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Wed Mar 29 2023
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Estimation Pore and Fracture Pressure Based on Log Data; Case Study: Mishrif Formation/Buzurgan Oilfield at Iraq
...Show More Authors

Prediction of the formation of pore and fracture pressure before constructing a drilling wells program are a crucial since it helps to prevent several drilling operations issues including lost circulation, kick, pipe sticking, blowout, and other issues. IP (Interactive Petrophysics) software is used to calculate and measure pore and fracture pressure. Eaton method, Matthews and Kelly, Modified Eaton, and Barker and Wood equations are used to calculate fracture pressure, whereas only Eaton method is used to measure pore pressure. These approaches are based on log data obtained from six wells, three from the north dome; BUCN-52, BUCN-51, BUCN-43 and the other from the south dome; BUCS-49, BUCS-48, BUCS-47. Along with the overburden pressur

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Apr 01 2018
Journal Name
Aquatic Geochemistry
The Origin and MgCl2–NaCl Variations in an Athalassic Sag Pond: Insights from Chemical and Isotopic Data
...Show More Authors

View Publication
Crossref (8)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
SDN-RA: An Optimized Reschedule Algorithm of SDN Load Balancer for Data Center Networks Based on QoS
...Show More Authors
Abstract<p>With the development of cloud computing during the latest years, data center networks have become a great topic in both industrial and academic societies. Nevertheless, traditional methods based on manual and hardware devices are burdensome, expensive, and cannot completely utilize the ability of physical network infrastructure. Thus, Software-Defined Networking (SDN) has been hyped as one of the best encouraging solutions for future Internet performance. SDN notable by two features; the separation of control plane from the data plane, and providing the network development by programmable capabilities instead of hardware solutions. Current paper introduces an SDN-based optimized Resch</p> ... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Thu Oct 29 2020
Journal Name
Complexity
Training and Testing Data Division Influence on Hybrid Machine Learning Model Process: Application of River Flow Forecasting
...Show More Authors

The hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s

... Show More
View Publication
Scopus (53)
Crossref (25)
Scopus Clarivate Crossref
Publication Date
Fri Mar 01 2024
Journal Name
Baghdad Science Journal
Exploring the Challenges of Diagnosing Thyroid Disease with Imbalanced Data and Machine Learning: A Systematic Literature Review
...Show More Authors

Thyroid disease is a common disease affecting millions worldwide. Early diagnosis and treatment of thyroid disease can help prevent more serious complications and improve long-term health outcomes. However, thyroid disease diagnosis can be challenging due to its variable symptoms and limited diagnostic tests. By processing enormous amounts of data and seeing trends that may not be immediately evident to human doctors, Machine Learning (ML) algorithms may be capable of increasing the accuracy with which thyroid disease is diagnosed. This study seeks to discover the most recent ML-based and data-driven developments and strategies for diagnosing thyroid disease while considering the challenges associated with imbalanced data in thyroid dise

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref