Preferred Language
Articles
/
xBYddIcBVTCNdQwCEEv2
Improving Nitrogen and Phosphorus Efficiency for Optimal Plant Growth and Yield
...Show More Authors

Nitrogen (N) and phosphorus (P) are the most important nutrients for crop production. The N contributes to the structural component, generic, and metabolic compounds in a plant cell. N is mainly an essential part of chlorophyll, the compound in the plants that is responsible for photosynthesis process. The plant can get its available nitrogen from the soil by mineralizing organic materials, fixed-N by bacteria, and nitrogen can be released from plant as residue decay. Soil minerals do not release an enough amount of nitrogen to support plant; therefore, fertilizing is necessary for high production. Phosphorous contributes in the complex of the nucleic acid structure of plants. The nucleic acid is essential in protein synthesis regulation; therefore, P is important in cell division and development of new plant tissue. P is one of the 17 essential nutrients for plant growth and related to complex energy transformations in the plant. In the past, growth in production and productivity of crops relied heavily on high-dose application of N and P fertilizers. However, continue adding those chemical fertilizers over time has bad results in diminishing returns regarding no improvement in crop productivity. Applying high doses of chemical fertilizers is a major factor in the climate change in terms of nitrous oxide gas as one of the greenhouse gas and eutrophication that happens because of P pollution in water streams. This chapter speaks about N and Puse efficiency and how they are necessary for plant and environment.

View Publication
Publication Date
Thu Apr 06 2023
Journal Name
Materials Science Forum
Study of the Effect of Ce <sup>3+</sup> on the Gas Sensitivity and Magnetic Properties of Cu<sub>x</sub>Ce<sub>0.3-X</sub>Ni<sub>0.7</sub>Fe<sub>2</sub>O<sub>4</sub> Ferrite Nanoparticles
...Show More Authors

This study includes the preparation of the ferrite nanoparticles CuxCe0.3-XNi0.7Fe2O4 (where: x = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3) using the sol-gel (auto combustion) method, and citric acid was used as a fuel for combustion. The results of the tests conducted by X-ray diffraction (XRD), emitting-field scanning electron microscopy (FE-SEM), energy-dispersive X-ray analyzer (EDX), and Vibration Sample Magnetic Device (VSM) showed that the compound has a face-centered cubic structure, and the lattice constant is increased with increasing Cu ion. On the other hand, the compound has apparent porosity and spherical particles, and t

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref