The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method was used to extract alkaloid compounds from the Catharanthus roseus plant and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles (CSNPs). The extracted alkaloids were linked with Chitosan nanoparticles by maleic anhydride to get the final product (CSNPs-Linker-alkaloids). The pure Chitosan, Chitosan nanoparticles, and CSNPs-Linker-alkaloids were characterized by X-ray diffractometer, and Fourier Transform Infrared spectroscopy. X-ray results show that all samples have an orthorhombic structure with crystallite size in nanodimensions. FTIR spectra prove that the P=O is the cross-linkage between chitosan and phosphate groups by ionic bond, which indicate that the Chitosan nanoparticle has been formed in the solution. FTIR spectrum for CSNPs - Linker - alkaloids appear a new distinct band at 1708.93 cm-1 which demonstrates the presence of C = O esterification. Atomic Force Microscope images of the Chitosan nanoparticles and CSNPs-Linker-alkaloids show that they have almost spherical shapes with average sizes of 90 and 92.6 nm respectively. The electroactive surface area of glassy carbon electrodes (GCE), extract plant, and Linker-alkaloids were calculated in KCl solution containing K3[Fe (CN)6]. The presence of CSNPs-Linker-alkaloids in modified glassy carbon electrodes about 3 times. The successful synthesis of organic nanoparticles from the Catharanthus roseus plant can be used safely in biosensors, environmental monitoring, and biomedical applications.
The kinetics of removing cadmium from aqueous solutions was studied using a bio-electrochemical reactor with a packed bed rotating cylindrical cathode. The effect of applied voltage, initial concentration of cadmium, cathode rotation speed, and pH on the reaction rate constant (k) was studied. The results showed that the cathodic deposition occurred under the control of mass transfer for all applied voltage values used in this research. Accordingly, the relationship between logarithmic concentration gradient with time can be represented by a first-order kinetic rate equation. It was found that the rate constant (k) depends on the applied voltage, the initial cadmium concentration, the pH and the rotational speed of cathode. It
... Show MoreIrinotecan induced-mucositis is an inflammatory event of intestine caused by an increase in concentration of active metabolite 7ethyl10-hydroxycamptothecin (SN38) in the intestine. Irinotecan must first be converted by a carboxylesterase (CES) to the active metabolite (SN38), which is subsequently glucuronidated by the hepatic enzyme to SN38G. The SN-38G is deconjugated in the intestine to SN-38 via ?-glucuronidase produced by the intestinal bacterial flora, which accounts for SN-38 delayed intestinal mucositis of irinotecan. To study the protective effect of mentha in irinotecan-induced mucositis, intestinal mucositis induced by I.P injection of irinotecan (75mg/Kg/day) for 4 days. Mentha ethanolic extract orally administered to
... Show MoreAbstract
The present study investigates the effect of acetic acid on corrosion behavior and its potential of hydrothermally sealed anodized AA2319-Al-alloys. Anodizing treatment was performed in stagnant phosphoric acid electrolyte with or without addition of acetic acid. Hydrothermal sealing was carried out in boiling water for each anodized specimen. The open circuit potential of the unsealed and sealed anodized samples was examined using open circuit potential measurement for the purpose of starting in scanning polarization diagrams. The potentiostatic polarization technique measurements were performed to assess corrosion behavior and sealing quality (i.e., degree of sealing) of
... Show MoreThe present research included synthesis of silver nanoparticle from(1*10-3,1*10-4 and1*10-5) M aqueous AgNO3 solution through the extract of M.parviflora reducing agent. In the process of synthesizing silver nanoparticles we detected a rapid reduction of silver ions leading to the formation of stable crystalline silver nanoparticles in the solution.
The percentage of fatty acids, quantity of tocopherols, tocotrienols, carotens and physiochemical characteristics of crude red palm oil have been evaluated, in addition to specific chemical detection of active compounds unsaponifiable matters. Results of Gas Liquid Chromatography showed:- The major fatty acids in red palm oil is palmitic (44.36%) then oleic (39.65%), linolenic (10.55%), stearic (3.56%), myristic (1.22%), arachdonic (0.24%) and palmotic (0.19%). Red palm oil contains ? – ?- ?- ? – Tocopherols with concentration 258 , 121 , 259, 109 m/kg oil , ? – ?- ?- ? – Tocotrienol with concentration 462.77 , 571.03, 619.18, 509.07 m/kg oil respectively. Total tocopherols & tocotrienols 2909.05 m/kg oil and
... Show More

