The Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method was used to extract alkaloid compounds from the Catharanthus roseus plant and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles (CSNPs). The extracted alkaloids were linked with Chitosan nanoparticles by maleic anhydride to get the final product (CSNPs-Linker-alkaloids). The pure Chitosan, Chitosan nanoparticles, and CSNPs-Linker-alkaloids were characterized by X-ray diffractometer, and Fourier Transform Infrared spectroscopy. X-ray results show that all samples have an orthorhombic structure with crystallite size in nanodimensions. FTIR spectra prove that the P=O is the cross-linkage between chitosan and phosphate groups by ionic bond, which indicate that the Chitosan nanoparticle has been formed in the solution. FTIR spectrum for CSNPs - Linker - alkaloids appear a new distinct band at 1708.93 cm-1 which demonstrates the presence of C = O esterification. Atomic Force Microscope images of the Chitosan nanoparticles and CSNPs-Linker-alkaloids show that they have almost spherical shapes with average sizes of 90 and 92.6 nm respectively. The electroactive surface area of glassy carbon electrodes (GCE), extract plant, and Linker-alkaloids were calculated in KCl solution containing K3[Fe (CN)6]. The presence of CSNPs-Linker-alkaloids in modified glassy carbon electrodes about 3 times. The successful synthesis of organic nanoparticles from the Catharanthus roseus plant can be used safely in biosensors, environmental monitoring, and biomedical applications.
In this study, the investigation of Local natural Iraqi rocks kaolin with the addition of different proportions of bauxite and its effect on the physical and mechanical properties of the produced refractories was conducted. Kaolin/bauxite mixture was milled and classified into various size fractions, the kaolin (less than 105 μm) and the bauxite (less than 70μm). The specimens were mixed from kaolin and bauxite in ranges B1 (95+5)%, B2 (90+10)%, B3(85+15)%, and B4 (80+20)% respectively. The green specimens were shaped by the semi-dry method using a hydraulic press and a molding pressure of 7 MPa with the addition of (9-12) %wt. of PVA ratio. After molding and drying, the specimens were fired at (1100, 1200 and 13
... Show MoreThe effect of substitution of Ni on Cu in (Bi0.8Pb0.2)2(Sr0.9Ba0.1)2 Ca2Cu3-x Nix O10+? for (x=0,0.1….1,2,3) superconductor system and sintering time has been investigated .The samples were prepared by solid-state reaction methods. The results show that the optimum sintering temperature is equal to 850 ºC, and the sintering time is equal to 140 h. The highest transition temperature (Tc) obtained for (Bi0.8Pb0.2)2(Sr0.9Ba0.1)2 Ca2Cu3-x NixO10+? composition was 113 with x=0.8 Phase analyses of the samples by X-ray diffraction (XRD) analysis showed an orthorhombic structure with a high Tc phases (2223) as a dominant phase and low Tc phase (2212) in addition to some impurity phases.
Gypseous soils are spread in several regions in the world including Iraq, where it covers more than 28.6% [1] of the surface region of the country. This soil, with high gypsum content causes different problems in construction and strategic projects. As a result of water flow through the soil mass, permeability and chemical arrangement of these soils vary over time due to the solubility and leaching of gypsum. In this study the soil of 36% gypsum content, is taken from one location about 100 km (62 mi) southwest of Baghdad, where the sample is taken from depth (0.5 - 1) m below the natural ground surface and mixed with (3%, 6%, 9%) of Copolymer and Styrene-butadiene Rubber to improve t
The use of bio-fruit waste has more attention in recent years because of the low cost of bio-fibers and the protection of the environment. In this study, the epoxy was reinforced with fruit residues (cantaloupe peel powder) in proportions (1%, 2%, 3%, 4%, 5%, 7.5%, and 10% by weight) as results of mechanical tests such as impact, hardness, flexural and compression.
Adding sub microns particle size cantaloupe peels particles with a weight ratio of 7.5% improves the epoxy mechanical properties, like impact strength, hardness, flexural strength, and compression strength by 59.43%, 5.8%, 45.7%, and 118.2%, respectively.
Using X-ray diffraction, the crystallite size ( D) of cantaloupe peel the powder was about (3 nm).
In
... Show MoreIn this paper we investigate how do the laminated composites behave mechanically when subjected to external stresses, when reinforced with continuous fibers (mat) and discontinuous fibers (chopped) and to find the effect of the fiber type on the mechanical properties. Laminated composites consisting of wood- wood and Ph-F resin as suitable adhesive were reinforced with different fibers(jute, glass, and carbon).However, two different methods of reinforcement namely, mat and chopped fibers were utilized. The mechanical properties such as (impact strength, compression strength, tensile strength, shear strength, bending strength, and elasticity modulus) of laminated composites were measured. Fibers reinforced laminated composite
... Show MoreThis researchs the preparation of particulate polymer composites from Alkyd resin and Iraqi Burn Kaolin which were added as (20%,30%,40%,50%)and comparing with the polymer. It studied Thermal conductivity and Dielectric strength for both of the Alkyd resin and the Composite Material. The result showed an increase in Dielectric strength after adding the Iraqi Burn Kaolin , also the Thermal conductivity was increased by adding the Iraqi Burn Kaolin .
The photo-electrochemical etching (PECE) method has been utilized to create pSi samples on n-type silicon wafers (Si). Using the etching time 12 and 22 min while maintaining the other parameters 10 mA/cm2 current density and HF acid at 75% concentration.. The capacitance and resistance variation were studied as the temperature increased and decreased for prepared samples at frequencies 10 and 20 kHz. Using scanning electron microscopy (SEM), the bore width, depth, and porosity % were validated. The formation of porous silicon was confirmed by x-ray diffraction (XRD) patterns, the crystal size was decreased, and photoluminescence (PL) spectra revealed that the emission peaks were centered at 2q of 28.5619° and 28.7644° for et
... Show MoreIn this work, the emission spectra and atomic structure of the aluminum target had been studied theoretically using Cowan code. Cowan code was used to calculate the transitions of electrons between atomic configuration interactions using the mathematical method called (Hartree-Fock). The aluminum target can give a good emission spectrum in the XUV region at 10 nm with oscillator strength of 1.82.
The hydrodynamic properties of laser produced plasma (LPP) were investigated for the purpose of creating a light source working in the EUV region. Such a light source is very important for lithography (semiconductor manufacturing). The improved MEDUSA (Med103) code can calculate the plasma hydrodynamic properties (velocity, electron density,
In this research a computational simulation has been carried out on the design and properties of the electrostatic mirror and a mathematical expression has been suggested to represent the axial potential of an electrostatic mirror. The electron beam path using the Bimurzaev technique had been investigated as mirror trajectory with the aid of Runge – Kutta method. The spherical and chromatic aberration coefficients of mirror has computed and normalized in terms of the focal length. The choice of the mirror depends on the operational requirements. The Electrode shape of mirror two electrodes has been determined by using package SIMION computer program. Computations have shown that the suggested potentials giv
... Show More