Preferred Language
Articles
/
x2FQHpkBdMdGkNqjGhNB
Transfer Learning and Hybrid Deep Convolutional Neural Networks Models for Autism Spectrum Disorder Classification From EEG Signals
...Show More Authors

Scopus Clarivate Crossref
View Publication
Publication Date
Thu Feb 07 2019
Journal Name
Journal Of The College Of Education For Women
Build and Implemented Learning Package for Prolog Programming Language Using Visual Basic.Net 2010
...Show More Authors

E-Learning packages are content and instructional methods delivered on a computer
(whether on the Internet, or an intranet), and designed to build knowledge and skills related to
individual or organizational goals. This definition addresses: The what: Training delivered
in digital form. The how: By content and instructional methods, to help learn the content.
The why: Improve organizational performance by building job-relevant knowledge and
skills in workers.
This paper has been designed and implemented a learning package for Prolog Programming
Language. This is done by using Visual Basic.Net programming language 2010 in
conjunction with the Microsoft Office Access 2007. Also this package introduces several
fac

... Show More
View Publication Preview PDF
Publication Date
Wed Mar 01 2017
Journal Name
The Iraqi Postgraduate Medical Journal
The Frequency and Spectrum of K-ras Mutations among Iraqi Patients with Sporadic Colorectal Carcinoma (CRC)
...Show More Authors

BACKGROUND: CRC is one of the most common cancers in the world. K-ras is proto-oncogene with GTPase activity that is lost when the gene is mutated. Analysis of K-ras mutational status is very important for CRC treatment, being the most important predictors of resistance to targeted therapy. OBJECTIVE: This study aims to determine the frequency and spectrum of K-ras mutation among Iraqi patients with sporadic CRC. PATIENTS, MATERIALS AND METHODS: This study enrolled 35 cases with sporadic CRC; their clinicopathological parameters were analyzed. The FFPE blocks were used for DNA extraction; PCR amplification of K-ras gene and hybridization of allele-specific oligoprobes were performed. The assay covers 29 mutations in the K-ras gene (codons 1

... Show More
Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Cybersecurity And Information Management
Machine Learning-based Information Security Model for Botnet Detection
...Show More Authors

Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet

... Show More
View Publication
Scopus (11)
Crossref (7)
Scopus Crossref
Publication Date
Fri Sep 30 2022
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Thu Sep 01 2022
Journal Name
Iraqi Journal Of Computers, Communications, Control And Systems Engineering
A Framework for Predicting Airfare Prices Using Machine Learning
...Show More Authors

Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre

... Show More
View Publication Preview PDF
Publication Date
Thu Dec 28 2023
Journal Name
Journal Européen Des Systèmes Automatisés
Design of a Hybrid Adaptive Controller for Series Elastic Actuators of Robots
...Show More Authors

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sun Mar 01 2015
Journal Name
International Journal Of Engineering And Innovative Technology
White Light Generation by Electroluminescence for ZnO Nanoparticle –Organic Hybrid Junction Device
...Show More Authors

ZnO organic hybrid junction (electroluminescence EL device) was fabricated using phase segregation method. ZnO-nanoparticle (NPs) was prepared as a colloidal by self–assembly method of Zinc acetate solution with KOH solution. Nanoparticle is employed to form organic-inorganic hybrid film and generate white light emission, while N,N’–diphenyl-N,N’ –bis(3-methylphenyl)-1,1’-biphenyl 4,4’-diamine (TPD) and polymethyl methacrylate (PMMA) are adopted as the organic matrices. ZnO NPs was used to fabricate TPD: PMMA: ZnO NPs hybrid junction device. The photoluminescence (PL) and electroluminescence (EL) spectra of the TPD: PMMA: ZnO NPs hybrid device provided a broad emission band covering entirely the visible spectrum (∼350-∼700

... Show More
View Publication
Publication Date
Wed Feb 01 2023
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Diagnose COVID-19 by using hybrid CNN-RNN for Chest X-ray
...Show More Authors

<p>Combating the COVID-19 epidemic has emerged as one of the most promising healthcare the world's challenges have ever seen. COVID-19 cases must be accurately and quickly diagnosed to receive proper medical treatment and limit the pandemic. Imaging approaches for chest radiography have been proven in order to be more successful in detecting coronavirus than the (RT-PCR) approach. Transfer knowledge is more suited to categorize patterns in medical pictures since the number of available medical images is limited. This paper illustrates a convolutional neural network (CNN) and recurrent neural network (RNN) hybrid architecture for the diagnosis of COVID-19 from chest X-rays. The deep transfer methods used were VGG19, DenseNet121

... Show More
View Publication
Scopus (17)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jan 01 2015
Journal Name
Applied And Computational Mathematics
Texture Classification Using Spline, Wavelet Decomposition and Fractal Dimension
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Mon Jan 20 2025
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Assessing Landsat Processing Levels and Support Vector Machine Classification
...Show More Authors

The availability of different processing levels for satellite images makes it important to measure their suitability for classification tasks. This study investigates the impact of the Landsat data processing level on the accuracy of land cover classification using a support vector machine (SVM) classifier. The classification accuracy values of Landsat 8 (LS8) and Landsat 9 (LS9) data at different processing levels vary notably. For LS9, Collection 2 Level 2 (C2L2) achieved the highest accuracy of (86.55%) with the polynomial kernel of the SVM classifier, surpassing the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) at (85.31%) and Collection 2 Level 1 (C2L1) at (84.93%). The LS8 data exhibits similar behavior. Conv

... Show More
View Publication