A new set of metal complexes by the general formula [M(P)2(H2O)2]Cl2 has been prepared through the interaction of the new Ligand [N1, N4-bis(4-methoxyphenyl)succinamide] (P) derived from succinyl chloride with p-anisidine with the transition metal ions [Cu(II), Mn(II), Cd(II), Co(II) and Ni(II)]. Compounds diagnosed by TGA, 1 H, 13CNMR and Mass spectra (for (P)), Fourier-transform infrared and Electronic spectrum, Magnetic measurement, molar conduct, (%M, %C, %H, %N). These measurements indicate that (P) is associated with the metal ion in a bi-dentate fashion by nitrogen atoms (the amide group), and the octahedral composition of these complexes is suggested. Staphylococcus Aureus (+) and Escherichia Coli (–) were studied for the antibacterial action of the compounds towards two types of bacteria. Using SKOV3-type ovarian cancer cell lines and comparing them to the normal cell line, the cell viability and cytotoxicity assay were performed on the Cu (II) complex by anticancer activity
Nano-crystalline iron oxide nanoparticles (magnetite) was synthesized by open vessel ageing process. The iron chloride solution was prepared by mixing deionized water and iron chloride tetrahydrate. The product was characterized by X-Ray, Surface area and pore volume by Brunauer-Emmet-Teller, Atomic Force Microscope (AFM) and Fourier Transform Infrared Spectroscopy(FTIR) . The results showed that the XRD in compatibility of the prepared iron oxide (magnetite) with the general structure of standard iron oxide, and in Fourier Transform Infrared Spectroscopy, it is strong crests in 586 bands, because of the expansion vibration manner related to the metal oxygen absorption band (Fe–O bonds in the crystals of iron ox
... Show MoreCoupling reaction of ( 4-amino antipyrene) with the (L- tyrosine ) gave the new azo ligand 2- ( 4- Antipyrene azo ) - tyrosine .Treatment of this ligand with metal ions (Mn(II) ,Co(II), Ni(II), and Cu(II) )in ethanolic medium in (1:2) (M:L) ratio yield a series of a neutral complexes of the general formula [M(L)2] . The prepared complexes were characterized using flame atomic absorption , FT.IR , UV-Vis spectroscopic and elemental microanalysis (C.H.N) as well as magnetic susceptibility and conductivity measurement
Metal-organic frameworks (MOFs) have emerged as revolutionary materials for developing advanced biosensors, especially for detecting reactive oxygen species (ROS) and hydrogen peroxide (H₂O₂) in biomedical applications. This comprehensive review explores the current state-of-the-art in MOF-based biosensors, covering fundamental principles, design strategies, performance features, and clinical uses. MOFs offer unique benefits, including exceptional porosity (up to 10,400 m²/g), tunable structures, biocompatibility, and natural enzyme-mimicking properties, making them ideal platforms for sensitive and selective detection of ROS and H₂O₂. Recent advances have shown significant improvements in detection capabilities, with limit
... Show MoreThis research provides a novel technique for using metal organic frameworks (HKUST-1) as a gas storage system for liquefied petroleum gas (LPG) in Iraqi vehicles to avoid the drawbacks of the currently employed method of LPG gas storage. A low-cost adsorbent called HKUST-1 was prepared and characterized in this research to investigate its ability for propane storage at different temperatures (25, 30, 35, and 40 oC) and pressures of (1-7) bar. HKUST-1 was made using a hydrothermal method and characterized using powder X-ray diffraction, BET surface area, scanning electron microscopic (SEM), and Fourier Transforms infrared spectroscopy (FTIR). The HKUST-1 was produced using a hydrothermal technique and possesses a high crys
... Show MoreSolvents are important components in the pharmaceutical and chemical industries, and they are increasingly being used in catalytic reactions. Solvents have a significant influence on the kinetics and thermodynamics of reactions, and they can significantly change product selectivity. Solvents can influence product selectivity, conversion rates, and reaction rates. However, solvents have received a lot of attention in the field of green chemistry. This is due to the large amount of solvent that is frequently used in a process or formulation, particularly during the purification steps. However, neither the solvent nor the active ingredient in a formulation is directly responsible for the reaction product's composition. Because these ch
... Show MoreThe present study aimed to synthesize selenium nanoparticles (SeNPs) using aqueous extract of black currant as a reducing agent. The green synthesized black currant selenium nanoparticles (BCSeNPs) were identified by color change. The characterization of SeNPs was achieved by Ultraviolet-visible (UV–VIS) spectroscopy, scanning electron microscopy (SEM), X–ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). These tests were used to detect: stability, morphology, size, crystalline nature, and functional groups present on the surface of BCSeNPs. The results revealed appearance of the brick-red color indicating the specific color of selenium nanoparticles, and UV-Vis spectroscopy showed band absorbanc
... Show MoreIn the present work, 9-fluorenone-2-carboxylic acid methyl ester (1) was prepared from 9-fluorenone-2-carboxylic acid and then converted into the acid hydrazide (2). Compound (2), is the key intermediate for the synthesis of several series of new compounds such as substituted 1,3,4-oxadiazole derivatives (3-6) were synthesized from the condensation of different substituted benzoic acids with compound (2) using POCl3 as condensing agent. Treatment of compound (2) with formic acid gave the N-formyl hydrazide (7), which upon refluxing with phosphorous pentoxide in benzene yielded the corresponding 5-(9-fluorenone-2-yl)-1,3,4-oxadiazole (8). Reaction of hydrazide (2) with phenyl isocyanate to give N-phenyl semicarbazide derivative (9), then thi
... Show MoreNanocrystalline aluminophosphate AlPO4-5 molecular sieves were synthesized by hydrothermal method (HTS). Synthesis parameters like time and temperature of crystallization were investigated. Type of template (R) and ratio of R/P2O5 were studied also. Characterization of the synthesized AlPO4-5 were done by powder X-ray diffraction (XRD), scanning electron microscopy (SEM/EDX), Fourier transform infrared (FTIR), differential scanning calorimetry-thermogravimetry analysis (DSC-TGA), and N2 adsorption-desorption BET analysis. XRD patterns results showed excellent crystallinity for two types of templates, di-n-propylamine (DPA) and tetrapropyl ammonium hydroxide (TPAOH) f
... Show MoreCarbon nanospheres (CNSs) were successfully prepared and synthesized by Catalytic Chemical Vapor Deposition (CCVD) by using camphor as carbon source only, over iron Cobalt (Fe-Co) saturated zeolite at temperature between (700 oC and 900 °C), with different concentrations of camphor, and reaction time. The synthesized CNSs were characterized using Scanning Electron Microscopy (SEM), X-ray diffraction spectroscopy (XRD), and Fourier Transform Infrared (FTIR). The carbon spheres in different sizes between 100 nm and 1000 nm were investigated. This work has done by two parts, first preparation of the metallic catalyst and second part formation CNSs by heat treatment.