This study investigates the characterization and mechanical performance of Stone Mastic Asphalt (SMA) mixtures modified with two types of polymers: styrene–butadiene–styrene (SBS) and high-molecular-weight polyethylene (PE). Neat asphalt cement PG 64-16 was modified using a higher content of SBS and PE at concentrations of 6%, 7%, and 8% by weight of asphalt through the dry blending method to produce Highly Modified Asphalts (HiMA). The physical and rheological properties of the modified binders were evaluated using penetration, softening point, rotational viscosity, and dynamic shear rheometer (DSR) tests. Also, their phase compatibility and morphological changes were evaluated using the storage stability testing and scanning electron microscopy (SEM) analysis. The mechanical performance of the corresponding SMA mixtures was assessed through Marshall stability and flow, moisture susceptibility, crack tolerance index (CT-index), resilient modulus, and rutting resistance tests. Also, a mechanistic durability analysis was conducted using the KENLAYER software. Results indicated that both polymers enhanced the binder’s stiffness and high-temperature performance, with SBS exhibiting greater overall improvements. SBS-modified binders displayed a relatively low softening point difference (ΔT) of 5.1 °C to 5.8 °C, indicating good thermal stability and uniform polymer dispersion. In contrast, PE-modified binders exhibited significantly higher ΔT values, reaching 13.5 °C with 8% PE content, indicating a greater tendency toward phase separation. Moreover, Marshall stability improved substantially, increasing by 43% for 8% SBS-modified mixes and 28% for 8% PE-modified mixes compared to the neat SMA mix. Flow number (FN) results indicated enhanced rutting resistance, with FN values increasing by 2.45 times for SBS mixes and 2.1 times for PE mixes at 8% polymer content. Additionally, moisture susceptibility was significantly improved, as evidenced by the tensile strength ratio (TSR) values of 97% with 8% SBS and 92% with 8% PE, compared to 81% for the neat mix. Resilient modules increased notably, with a 38% rise for 8% SBS mixes and a 24% rise for 8% PE mixes, reflecting enhanced stiffness and load-bearing capacity. Also, the CT-index significantly improved, reaching values of 154 for the 8% SBS mix and 127 for the 8% PE-modified mix, compared to 86 for the neat mix, indicating enhanced resistance to cracking. Finally, both polymer-modified mixes demonstrated improved durability, where the 8% SBS mix exhibited the longest design life (21.66 years) and the highest number of allowable load repetitions (5.42 × 106), followed by 8% PE (13.98 years and 3.50 × 106 repetitions).
Warm asphalt mixture (WMA) and reclaimed asphalt pavement (RAP) are the most memorable sustainable materials in world of asphalt concrete pavements . This research aims to study the warm asphalt mixture for different types of filler materials such as ordinary cement and limestone dust. Beside, this research focused on the test of emulsified asphalt properties by evaluating the performance of warm asphalt mixture by Marshall Stability properties as well as moisture sensitivity. The results of this experiment provided many important points. First, The cationic emulsified asphalt is suitable with RAP aggregate for production warm asphalt mixtures .Second, The effective mixing procedure for warm asphalt mixtures consists hea
... Show MoreWarm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA. Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repe
... Show MoreWarm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA. Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repeated load test)
... Show MoreThe acrylic polymer composites in this study are made up of various weight ratios of cement or silica nanoparticles (1, 3, 5, and 10 wt%) using the casting method. The effects of doping ratio/type on mechanical, dielectric, thermal, and hydrophobic properties were investigated. Acrylic polymer composites containing 5 wt% cement or silica nanoparticles had the lowest abrasion wear rates and the highest shore-D hardness and impact strength. The increase in the inclusion of cement or silica nanoparticles enhanced surface roughness, water contact angle (WCA), and thermal insulation. Acrylic/cement composites demonstrated higher mechanical, electrical, and thermal insulation properties than acrylic/silica composites because of their lowe
... Show MoreDurability of hot mix asphalt (HMA) against moisture damage is mostly related to asphalt-aggregate adhesion. The objective of this work is to find the effect of nanoclay with montmorillonite (MMT) on Marshall properties and moisture susceptibility of asphalt mixture. Two types of asphalt cement, AC(40-50) and AC(60-70) were modified with 2%, 4% and 6% of Iraqi nanoclay with montmorillonite. The Marshall properties, Tensile strength ratio(TSR) and Index of retained strength(ISR) were determined in this work. The total number of specimens was 216 and the optimum asphalt content was 4.91% and 5% for asphalt cement (40-50) and (60-70) respectively. The results showed that the modification of asphalt cement with MMT led to increase Marsh
... Show MoreDue to economic reasons or need for environmental conservatism or also preserve the natural resources; there has been an increasing shift towards the use of reclaimed asphalt pavement (RAP) materials in the pavement construction industry. Therefore, use the Reclaimed Asphalt Pavement (RAP) has been enormously increased in pavement construction and has been become common practice in many countries. Nevertheless, this is a relatively new concept in Iraq, and has to be remarked that is not used RAP in the production of HMA and this valuable material is mostly degraded. For this purpose, the reclaimed materials were collected from deteriorated pavement segments. The components of asphalt mixtures consist of: two asphalt penetration grades (40-5
... Show MoreThis research utilized natural asphalt (NA) deposits from sulfur springs in western Iraq. Laboratory tests were conducted to evaluate the performance of an asphalt mixture incorporating NA and verify its suitability for local pavement applications. To achieve this, a combination of two types of NA, namely soft SNA and hard HNA, was blended to create a binder known as Type HSNA. The resulting HSNA exhibited a penetration grade that adhered to Iraqi specifications. Various percentages of NA (20%, 40%, 60%, and 80%) were added to petroleum asphalt. The findings revealed enhanced physical properties of HSNA, which also satisfied the requirements outlined in the Iraqi specifications for asphalt cement.
Consequently, HS
... Show MoreIn this study, condensation polymerization was used to synthesize a number of novel liquid crystal polymers with 1,3,4-oxadiazole rings based on melamine. The new synthesized polymers were characterized by Fourier transform infrared (FTIR) and proton nuclear magnetic resonance (1HNMR) spectroscopy. Differential scanning calorimetry (DSC) and optical polarization microscopy (OPM) were used to investigate their liquid crystalline properties. The results demonstrated that throughout a wide temperature range, most of the polymers exhibited columnar (CohX) and nematic (N) liquid crystalline phases.
Background: Incorporation of chemical additives has long been a technique used to improve properties of the gypsum products. The purpose of this work was to study the effects of adding a combination of gum Arabic and calcium hydroxide to a type III dental stone and type IV improved die stone with different proportion. The effect on water/powder ratio, and surface hardness was determined. Material and method: Both material stone and die stone were blended with two proportion of additives so that each material was mixed twice but with different proportion of gum Arabic (0.1% and 0.2%) and calcium hydroxide (0.5 % and 0.3%). Data for hardness were subjected to two-way analysis of variance. Results: The results revealed that the chemical additi
... Show More