Aims: This study was conducted to assess the effect of the addition of yttrium oxide (Y2O3) nanoparticles on the tensile bond strength, tear strength, shore A hardness, and surface roughness of soft-denture lining material. Materials and Methods: Y2O3 NPs with 1.5 and 2 wt.% were added into acrylic-based heat-cured soft-denture liner. A total of 120 specimens were prepared and divided into four groups according to the test to be performed (tensile bond strength, tear strength, surface hardness, and surface roughness). Results: There was a highly significant increase in tensile bond strength between the soft liner and the acrylic denture base, tear strength, and hardness at both concentrations as compared to the control group, whereas there was a nonsignificant difference between 1.5wt% of Y2O3 nanoparticles and the control group, and between 1.5wt% and 2wt% of Y2O3 nanoparticles. But there was a significant difference between 2wt% of Y2O3 nanoparticles and the control group. Conclusion: The Y2O3 nanoparticles impregnated in soft-lining materials increased the mechanical properties of both tensile bonding strength and tear strength. Also, there was a significant increase in hardness but there was no change in surface roughness of acrylic-based denture soft-lining materials.
Background: Debonding orthodontic brackets and removal of residual bonding material from the enamel surface include critical steps that may cause enamel damage. The aim of the present study was to evaluate and compare the site of bond failure and enamel surface damage after debonding of three types of esthetic brackets (composite, ceramic, sapphire) bonded with light cure composite and resin-modified glass ionomer adhesive. Materials and methods: Seventy two maxillary premolars teeth were divided into three groups each group consisted of 24 teeth according to the type of brackets. Each group was subdivided into two subgroups (12 teeth for each) according to the bonding material that was used. After 7 days of bonding procedure, the brackets
... Show MoreVarious assays are used to determine the toxic effects of drugs at cellular levels in vitro. One of these methods is the dye exclusion assay, which measures membrane integrity in the presence of Trypan blue. Trypan blue the dye which was used in this study to investigate cytotoxic effect of a new Cis –dichloroplatinum (II) complex [(Qu)2PtCl2] on the viability of polymorphonuclear cells (PMNs). Three concentrations of platinum complex were prepared (70, 35and 17.5 µg/ ml) and the results revealed that the percentage of cell viability decreased as the platinum complex concentration increased in comparison with control.
... Show MoreBackground: To evaluate the ISO depth of cure of bulkfill composites and depth of cure which determined by Vickers microhardness test. Materials and Methods: Bulkfill resin composite specimens (n=150) were prepared of three bulkfill composite materials (TetricEvo Ceram, Quixfil and SDR) and light cured by Flash max p3 for 3, 10, 20 seconds and by wood pecker for 10, 20 seconds respectively, a mold was filled with one of the three bulkfill composites and light cured. The specimens removed from the mold and scraped by plastic spatula and the remaining length (absolute length) was measured which represent the ISO depth of cure. After that the specimens were returned into the mold and a microhardness indentation device applied on the specimen
... Show MoreBackground: Ceramic veneers represent the treatment of choice in minimally invasive esthetic dentistry; one of the critical factors in their long term success is marginal adaptation. The aim of the present study is to evaluate the marginal gap of ceramic veneers by using two different fabrication techniques and two different designs of preparation. Material and methods: A typodont maxillary central incisor used in the preparation from which metal dies were fabricated, which were in turn used to make forty stone dies. The dies divided into four experimental groups, each group had ten samples: A1: prepared with butt-joint incisal reduction and restored with IPS e.max CAD, A2: prepared with overlapped incisal reduction and restored with IPS e.
... Show MoreSeventy five E. coli isolates were collected from urine of patients with urinary tract infections in AL-Kadhimia and AL-Yarmook teaching hospitals in Baghdad for a period between 22/11/2009 to 15/3/2010, from these samples twenty five isolates were selected according to their pattern of the highest resistance as these showing multi-drug resistances and tested to specify their minimum inhibitory concentration for (meropenem, gentamicin and amikacin), meropenem was found having the lowest MIC comparing with others. This study also includes in vitro effects of various combinations of three types of antimicrobials (meropenem, gentamicin and amikacin) against twenty five E. c
... Show MoreBackground: The marginal adaptation has a key role in the success and longevity of the fixed dental restoration, which is affected by the impression and the fabrication techniques .The objective of this in vitro study was to evaluate and compare the marginal fitness of lithium disilicate crowns using two different digital impression techniques (direct and indirect techniques) and two different fabrication techniques (CAD/CAM and Press techniques). Materials and Methods: Thirty two sound upper first premolar teeth of comparable size extracted for orthodontic reason were selected in this study .Standardized preparation of all teeth samples were carried out with modified dental surveyor to receive all ceramic crown restoration with 1 mm deep
... Show MoreThe ZnO nanoparticles were synthesized at various precursor concentrations i.e. 0.05, 0.1, and 0.5 M by biosynthesis method based on Pometia pinnata Leaf Extracts. Initial nanoparticle concentration influenced the optical bandgap, shape, and structure of nanoparticles. The photodegradation process was carried out under UV illumination. The efficiency of MB degradation was determined by measuring the decrease in MB concentration and by analyzing the optical absorption at 663 nm recorded by UV-Vis spectroscopy. Results showed that the biosynthesized ZnO nanoparticles exhibited efficient photodegradation of MB, with a maximum degradation rate of 80% after 90 minutes of exposure to UV-C light. The study highlights the potential of Pometia pi
... Show More