High tunnels, or unheated plastic greenhouses, are becoming increasingly popular among organic vegetable growers across the United States. However, the intensive production typical of these systems presents soil health challenges, including salinization due to high fertilizer or compost inputs coupled with lack of rainfall to leach salts. Legume cover crops may improve soil health in high tunnels by reducing the need for external inputs, while adding organic matter. We tested the soil health effects of a winter hairy vetch (Vicia villosa Roth) cover crop used to replace fertilizer N in an organic tomato cropping system in high tunnels. Studies were replicated across three sites differing in climate and soil type (Kansas, Kentucky, and Minnesota) over three years. We measured vetch cover crop effects on a suite of soil health indicators, including potentially mineralizable nitrogen (PMN), permanganate oxidizable carbon, and microbial biomass. Preliminary results suggest that vetch effects on PMN were highly variable. Soil mineral N, meanwhile, was often lower in the vetch treatment than in a fertilized control, both in spring and in fall. While further work on vetch effects on crop yields is needed, our results suggest that even legume cover crops such as vetch have the potential to reduce nitrate leaching.
In the present research, the chemical washing method has been selected using three chelating agents: citric acid, acetic acid and Ethylene Diamine Tetraacetic Acid (EDTA) to remove 137Cs from two different contaminated soil samples were classified as fine and coarse grained. The factors that affecting removal efficiency such as type of soil, mixing ratio and molarity have been investigated. The results revealed that no correlation relation was found between removal efficiency and the studied factors. The results also showed that conventional chemical washing method was not effective in removing 137Cs and that there are further studies still need to achieve this objective.
In this experimental study, the use of stone powder as a stabilizer to the clayey soil studied. Tests of Atterberg limits, compaction, fall cone (FCT), Laboratory vane shear (LVT), and expansion index (EI) were carried out on soil-stone powder mixtures with fixed ratios of stone powder (0%, 5%, 10%, 15%, and 20%) by the dry weight. Results indicated that the undrained shear strength obtained from FCT and LVT increased at all the admixture ratios, and the expansion index reduced with the increase of the stone powder.
Soil defilement with "raw petroleum" is a standout amongst the most across the board and genuine ecological issues going up against both the industrialized and oil country like Iraq. Along these lines, the impact of "raw petroleum" on soil contamination is one of most critical subjects that review these days. The present examination expects to research "unrefined oil"effectson the mechanical and physical properties of clayey soils. The dirt examples were acquired from Al-Doura area in Baghdad city and arranged by the "Brought together Soil Grouping Framework (USCS)" as silty mud of low pliancy (CL). Research center tests were done on contaminated and unpolluted soil tests with same thickness. The dirtied tests are set up by blending
... Show MoreSoil stabilization with liquid asphalt is considered as a sustainable step towards roadway construction on problematic subgrade soil, there are no requirements to import good quality materials or to implement energy consumption, but to mix the readily available soil with liquid asphalt through the cold mix technique. In this work, collapsible soil obtained from Nasiriya was mixed with asphalt emulsion, lime, and combinations of lime and asphalt emulsion (combined stabilization) and tested in the laboratory for California bearing ratio in dry and soaked conditions. Field trial sections have been prepared with the same combinations and subjected to plate bearing test. The influence of combined stabilization on the structural properties in ter
... Show MoreCollapsible behaviour of soil is considered as one of the major problems in the stability of roadway embankment, the lack of cohesion between soil particles and its sensitivity to the change of moisture content are reasons for such problem. Creation of such cohesion may be achieved by implementation of liquid asphalt and introduction of Nano additives. In this work, silica fumes, fly ash and lime have been implemented with the aid of asphalt emulsion to improve the unconfined compressive strength of the collapsible soil. Specimens of 38 mm in diameter and 76 mm height have been prepared with various percentages of each type of Nano additive and fluid content. Specimens were subjected to unconfined compressive strength determination at dry a
... Show MoreEffect of zinc chloride on the immune functions was studied in male albino mice aged 6-7 weeks. It was administrated orally (1ml) in three concentrations (0.5ppm, 1ppm, 2ppm) for 9 days. The results showed that the first concentration was not effective comparing with control while the second concentration increased the enhancement of immune system and the cell third one killed the mice 6 hours post administration, so we can conclude that the high dose of ZnCl2 could be harmful for all metabolism.
The study of Stress- Strain relation for novolac reinforced by qujurate plant was carried out before and after the immersing in boiled water at 100C0 . It was found that the compression strength and surface hardness decreased when the composites immersed in boiled water for long times.