This experiment was performed to investigate the influence of different oils in the diets of laying quail on their egg quality characteristics. One hundred and twenty 7-wk old Japanese quails (Coturnix coturnix japonica) were allocated to four groups with three replicates containing 10 quail each (30 quail per each treatment group). They were fed for 13 weeks (including one week of adaptation period) on diets containing 3% oil from different sources, viz. either sunflower (T1), linseed (T2), maize (T3), or fish oil (T4). Inclusion the diet of laying quail with fish oil (T4) and maize oil (T2) resulted in significant increase with respect to egg weight, yolk weight, albumen weight, yolk diameter, yolk height, albumen diameter, albumen height, shell thickness and Haugh unit during all periods of experiment and in total means of these parameters. However, the addition of different oil sources used in this experiment to quail diets did not significantly affect total means of shell weight, relative weight of albumen and relative weight of shell, while total means of relative weight of yolk, yolk index and albumen index were higher in the birds receiving diets containing fish (T4) and maize (T2) oil than in other treatments (T1 and T3). The results of this experiment clearly demonstrated that supplementation the laying quail diet with fish and maize oil improved most criteria of egg quality. Therefore, incorporation of fish and maize oil into the diets of Japanese quail may have practical value in manipulating egg quality. © Asian Network for Scientific Information, 2011.
Self- curing is the potential of lightweight aggregate to absorption great amount of water thru mixing which prominently can moves to the paste during hydration process. Self- curing empowers a water to be distributes more evenly act out the cross section. Whereas, the external curing water is only able to penetrate several millimetres into concrete with low water cement ratio. Brick dust accumulates in the demolish site creates serious environmental contamination. This study investigates the effect of brick dust recovered from construction site on the Properties of mortar cured in three curing conditions. Mortar in this study produced using BD as cement additive with (2, 4, 6, and 8) % by weight of cement. BD was used a
... Show MoreAeromonas hydrophila have been isolated as a cause of a cute gastroenteritis in 23 (5.6%) of 410 patients. Other bacterial enteropathogens have been isolated from 387 patients with diarrhea, were 19 different strains. A. hydrophila occurred more commonly in children with acute diarrhea, the results showed that 18(78.26%) isolates of A. hydrophila found in children under 10 years old ,distributed to 10(43.47%) in male and 8(34.78%) in female ,and in adults with diarrhea 5 (21.73%). In the other hand, we noticed frequency of isolation was higher in male 14(60.86%) when compared with 9(39.14%) in female. Six strains of A. hydrophila have been observed to have bacteriocin activity against 12 of 23 different A. hydrophila ,as well as Staphy
... Show Morehis study aimed to investigate the usability of Recycled Concrete Aggregate (RCA) in warm mix asphalt (WMA) as the implementation of sustainable construction technology. Five replacement rates (0%, 25%, 50%, 75%, and 100%) were tested for the coarse fraction of virgin aggregate (VA) with 3 types of RCA: untreated RCA, HL-treated RCA, and HCL-treated RCA. Scanning electron microscopy (SEM) analyses were performed to investigate the surface morphology for both treated and untreated RCA. The optimum asphalt cement content for every substitution rate was determined using Marshall mix design method. Thereafter, asphalt concrete specimens were prepared using the optimum asphalt cement content, followed by the evaluation of their performance prope
... Show MoreScleral acrylic resin is widely used to synthesize ocular prosthesis. However, the properties of this material change over time, thus requiring the prosthesis to be refabricated. Many studies were conducted to improve these properties by reinforcing this material with nanoparticles. This study aims to evaluate the effect of silver nanoparticle powder on the mechanical properties (transverse flexural strength, impact strength, shear bond strength, surface microhardness, and surface roughness) of scleral acrylic resin used for ocular prostheses. Two concentrations were selected from the pilot study and evaluated for their effects on scleral acrylic resin properties. According to the pilot study, 0.01 and 0.02wt% AgNPs powder improved
... Show MoreThe durability of asphalt concrete is highly dependent on the geometry and mineralogy of coarse aggregates, yet their combined influence on mechanical and moisture resistance properties is still not fully understood. This study evaluates the effects of coarse aggregate geometry, specifically flat and elongated particle ratios and angularity, as well as mineral composition (quartz versus calcite), on asphalt mixture durability. The durability of mixtures was evaluated through Marshall properties as well as moisture susceptibility indicators, including the tensile strength ratio (TSR) and index of retained strength (IRS). Statistical analyses (ANOVA and t-tests) were also conducted to confirm the significance of the observed effects.
... Show MoreOver the last few decades, fiber reinforced polymer (FRP) has been increasingly used in strengthening different structural concrete members. The main objective of this research is to study the influence of curvature on the performance of curved soffit reinforced concrete (RC) bridge girders that have been strengthened with carbon fiber reinforced polymers (CFRP). This experimental program was designed to evaluate the effect of concavity and soffit curvature on the CFRP laminate utilization and load capacity, compared to flat soffit RC beams strengthened with the same CFRP system. Accordingly, five beams, 2.7 m in length and having the same degree of soffit curvature (20 mm per 1 meter
Enhancing fatigue resistance in asphalt binders and mixtures is crucial for prolonging pavement lifespan and improving road performance. Recent advancements in nanotechnology have introduced various nanomaterials such as alumina (NA), carbon nanotubes (CNTs), and silica (NS) as potential asphalt modifiers. These materials possess unique properties that address challenges related to asphalt fatigue. However, their effectiveness depends on proper dispersion and mixing techniques. This review examines the mixing methods used for each nanomaterial to ensure uniform distribution within the asphalt matrix and maximize performance benefits. Recent research findings are synthesized to elucidate how these nanomaterials and their mixing proce
... Show More