Codes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an ob
... Show MoreThe faujasite type Y zeolite catalyst was prepared from locally available kaolin. For prepared faujasite type NaY zeolite X-ray, FT-IR, BET pore volume and surface area, and silica/ alumina were determined. The Xray and FT-IR show the compatibility of prepared catalyst with the general structure of standard zeolite Y. BET test shows that the surface area and pore volume of prepared catalyst were 360 m2 /g and 0.39 cm3 /g respectively.
The prepared faujasite type NaY zeolite modified by exchanging sodium ion with ammonium ion using ammonium nitrate and then ammonium ion converted to hydrogen ion. The maximum sodium ion exchange with ammonium ion was 53.6%. The catalytic activity of prepared faujasite type NaY, NaNH4Y and NaHY zeolites
The research study is important since it establishes predicted rates for various nervous system functional indicators.In terms of performing the skill of Dribbling in basketball for young players in Baghdad Governorate in order to reach scientific results that serve researchers, coaches, and players uniformly. The study's goal is to create predictive equations for specific functional indicators of the nervous system in relation to the Dribbling skill performance of young basketball players in Baghdad Governorate. The researchers used a descriptive approach with a survey method on (8) youth basketball league clubs in Baghdad Governorate for the 2022-2023 sports season, totaling (96) players . Three tests were used to measure the nervous sy
... Show MoreBackground: Radiologic evaluation of breast lesions is being achieved through several imaging modalities. Mammography has an established role in breast cancer screening and diagnosis. Still however, it shows some limitations particulary in dense breast.
Methods : Magnetic resonance imaging is an attractive tool for the diagnosis of breast tumors1 and the use of magnetic resonance imaging of the breast is rapidly increasing as this technique becomes more widely available.1 As an adjunct to mammography and ultrasound, MRI can be a valuable addition to the work-up of a breast abnormality. MRI has the advantages of providing a three-dimensional view of the breast, performing wit
... Show MoreThis srudy aimed to use a new concentration from l\!J3T (Nitroblue tetrazolium) which using NADH stain ( by used eight different concentrations from (0.2% to 0.06% ).
That stain is a mitochondrial and cytoplasmic histochemical stain which gi ves more infom1ation about the metabolic activity of muscle fiber, so it is valuable in determining the types of muscle fibers and good fiber differentiation type {T) and type (TT) fibers), by reducing NBT in the location of enzyme and gives a blue color in different degrees according to the types of muscle fibers, and we noticed that the concentration 0.1% from NBT gives a good result and di
... Show MoreCodes of red, green, and blue data (RGB) extracted from a lab-fabricated colorimeter device were used to build a proposed classifier with the objective of classifying colors of objects based on defined categories of fundamental colors. Primary, secondary, and tertiary colors namely red, green, orange, yellow, pink, purple, blue, brown, grey, white, and black, were employed in machine learning (ML) by applying an artificial neural network (ANN) algorithm using Python. The classifier, which was based on the ANN algorithm, required a definition of the mentioned eleven colors in the form of RGB codes in order to acquire the capability of classification. The software's capacity to forecast the color of the code that belongs to an object under de
... Show MoreThe main object of the current work was to determine the antifungal efficiency of secondary metabolites product called synephrine that extracted from Citrus sinesis peels and the ability of synephrine to biosynthesis gold nanoparticles from HAucl4 which consider environmentally favourable method, then determine their activity against pathogenic human dermatophyte. The identification of synephrine done by Thin layer chromatography (TLC), High Performance Liquid Chromatography (HPLC) and The Fourier Transform Infrared (FTIR). The characterization of gold nanoparticles by using Ultra Violet-Visible Spectroscopy (UV-Vis), Field – Emission Scanning Electron Microscopy (FESEM) and Fourier Transform Infrared (FTIR), confirmed the biosynt
... Show MorePseudomonas aeruginosa is common gram negative rod – shaped bacterium, a species of considerable medical importance, P. aeruginosa is prototypical "multi drug resistant (MDR) Pathogen" that is recognised for its ubiquity, its intrinsically advanced antibiotic resistance mechanisms, and its associatation with serious illnesses – especially nosocomial infection such as ventilator – associated pneumonia and various sepsis syndromes. This study was conducted from March 2014 to July 2014, the patients were males and females. Total samples of 613 patients, selected from burns wards and general surgery wards, the samples were sending to teaching laboratories from the same hospital. The present study
... Show MoreThe huge amount of documents in the internet led to the rapid need of text classification (TC). TC is used to organize these text documents. In this research paper, a new model is based on Extreme Machine learning (EML) is used. The proposed model consists of many phases including: preprocessing, feature extraction, Multiple Linear Regression (MLR) and ELM. The basic idea of the proposed model is built upon the calculation of feature weights by using MLR. These feature weights with the extracted features introduced as an input to the ELM that produced weighted Extreme Learning Machine (WELM). The results showed a great competence of the proposed WELM compared to the ELM.