This contribution investigates the effect of the addition of the Hubbard U parameter on the electronic structural and mechanical properties of cubic (C-type) lanthanide sesquioxides (Ln2O3). Calculated Bader's charges confirm the ionic character of Lnsingle bondO bonds in the C-type Ln2O3. Estimated structural parameters (i.e., lattice constants) coincide with analogous experimental values. The calculated band gaps energies at the Ueff of 5 eV for these compounds exhibit a non-metallic character and Ueff of 6.5 eV reproduces the analogous experimental band gap of cerium sesquioxide Ce2O3. We have thoroughly investigated the effect of the O/Ce ratios and the effect of hafnium (Hf) and zirconium (Zr) dopants on the reduction energies of CeOx configurations. Our analysis for the reduction energy of CeO2, over a wide range of temperatures displays that, shuffling between the two +4 and +3 oxidation states of Ce exhibit a temperature-independent behaviour. Higher O/Ce ratios necessitate lower reduction energies. Our results on Cesingle bondHfsingle bondZrsingle bondO alloys are in reasonable agreements with analogous fitted values pertinent to lowering reduction energies and shrinkage in lattice parameters when contrasted with pure CeO2. Structural analysis reveals that Hf and Zr atoms in the solid solution are shifted towards the nearest vacancies upon reduction. It is hoped that values provided herein to shed an atomic-base insight into the reduction/oxidation thermodynamics of increasingly deployed catalysts for environmental applications.
In this paper a thin films of selenium was prepare on substrates of n-Si by evaporation in a vacuum technique with thickness about 0.5μm. And then an annealing process was done on samples at two temperature (100 and 200) C ° in a vacuum furnace (10-3 torr).
Some structural, optical and mechanical properties of prepared thin films were measured. Results showed that the prepared film was the crystallization, optical transmittance and micro hardness of the prepared thin films increased significantly after annealing.
Carbides or nitrides thin films present materials with good mechanical properties for industrial applications as they can be coatings at low temperatures serve temperature sensitive surfaces. In this work the effect of the C percentage on the mechanical properties represented by the Young modulus (E) of combinatorial magnetron sputtered TiCx (34%x˂65%) has been studied. The structure of the produced films is TiC independent on the C concentration. The mechanical properties are increased with increasing the C concentration up to 50%, and then decreasing with further C % increasing. These results can be explained by considering the resultant residual stresses.
Background: Dental stone casts come into contact with impression materials and becomes susceptible to cross contamination from saliva and blood. This study was done to evaluate the physical and mechanical properties of dental stone type IV after treatments with various disinfecting agents and regimes (methods). Materials and Methods: Type IV dental stone and different types of disinfecting agents were used and divided into seven groups: G1: dental stone without disinfection (control group), G2: dental stone mixed with silver nitrate powder 0.5% , G3: dental stone mixed with silver nitrate powder 1%, G4: dental stone mixed with copper sulfate powder 0.5%, G5: dental stone mixed with copper sulfate powder 1% ,G6: dental stone immersed in prop
... Show MoreThe physical, the thermal and the mechanical properties of Nano-composites, that consisted of Polyprime EP epoxy that reinforced by multi-walled carbon nanotubes (MWCNTs), have been studied. Various loading ratios, 0.1, 0.5, and 1 wt. %of MWCNT shave been infused into epoxy by a magnetic stirrer and then the hardener mixed with the mthat supplied with the epoxy. All sample shave been cutting using CNC machine. Tensile test, three-point bending, hardness tests, lee's disk, differential scanning calorimetry, water absorption and dielectric and electrical conductivity test were utilized on unfilled, MWCNT-filled epoxy to identify the loading effect on the properties of materials. Scanning electron microscopy (SEM) was used to determine the
... Show MoreThe electrospun nanofibers membranes (ENMs) have gained great attention due to their superior performance. However, the low mechanical strength of ENMs, such as the rigidity and low strength, limits their applications in many aspects which need adequate strength, such as water filtration. This work investigates the impact of electrospinning parameters on the properties of ENMs fabricated from polyacrylonitrile (PAN) solved in N, N-Dimethylformamide (DMF). The studied electrospinning parameters were polymer concentration, solution flow rate, collector rotating speed, and the distance between the needle and collector. The fabricated ENMs were characterized using scanning electron microscopy (SEM) to understand the surface morphology and es
... Show MoreIn this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J
... Show MoreThe present research investigates joints welding of 304L austenitic stainless steel using metal inert gas (MIG) welding method. The research explores the effect of process parameters (arc voltage, wire feed rate, and electrode wire diameter) on the mechanical properties of stainless steel. The above variables are varied respectively with 18.5, 19, 19.5 V, 116, 127, 137 mm/s, and 0.8, 1, 1.2 mm, with E308L as a filler electrode. The design matrix of the experiments was determined using the design of experiment (DOE) program Minitab 17 based on the levels of input elements used. The Taguchi orthogonal matrix methodology (Taguchi) technique was used to develop some empirical analysis for the maximum tensile strength and proper surface
... Show MoreIn this research, nanocomposites of poly(methyl methacrylate) (PMMA) and a mixture of nano silica (SiO2) and nano zirconia (ZrO2) were prepared in different weight percentages of the nano fillers to improve some of the properties of PMMA resin to be used as a denture base material. The nano filles were surface modified with a coupling agent and added to the PMMA in different amounts. Impact strength, transverse strength, hardness and roughness were tested for both control and experimental groups. The results indicate that PMMA/silica/zirconia nanocomposites, prepared with 5% by weight of both types of fillers, had a slight increase in impact s
Fiber reinforced polymer composite is an important material for structural application. The diversified application of FRP composite has taken center of attraction for interdisciplinary research. However, improvements on mechanical properties of this class of materials are still under research for different applications. In this paper we have modified the epoxy matrix by Al2O3, SiO2 and TiO2 nano particles in glass fiber/epoxy composite to improve the mechanical and physical properties. The composites are fabricated by hand lay-up method. It is observed that mechanical properties like flexural strength, hardness are more in case of SiO2 modified epoxy composite compare to other nano
... Show More