Otitis media with effusion (OME) is the long-term deposition of mucus in the middle ear cleft. It is the leading cause of childhood hearing loss and a common childhood infection. It can impair communication and life quality. OME's direct and indirect costs are also crucial. Improving OME care is crucial. This study examines intranasal mometasone's efficacy in treating otitis media with effusion. A clinical trial study was conducted during a period from January 2021 to June 2022. It included 80 patients suffering from otitis media with effusion bilaterally (160 ears) who had an intact tympanic membrane and tympanometry type B. These patients were included only if they had a hearing change or loss noted by the parents or by the patient if he or she could complain for three months or more. These patients were split into two groups. Group A had 80 ears (40 patients) who got one puff of mometasone furoate nasal spray in each nostril every day for three months, and Group B had 80 ears (40 patients) who got one puff of seawater nasal spray in each nostril every day for the same period. On the first visit, otoscopic findings were recorded, and all patients had pure-tone audiometry and tympanometry performed. All of the above-mentioned measures were repeated and compared to the records from the first visit at the end of the three months of treatment. After treatment, 75% of ears in Group A changed from type B to type A tympanometry. This was significantly higher than in Group B, where only 15% of ears changed from type B to type A tympanometry. Regarding retraction, 75% of ears in Group A showed no retraction after treatment with mometasone furoate, while in Group B, it was 40%. The average pure-tone audiometry score in Group A improved after therapy. Corticosteroids are effective in the treatment of otitis media with effusion and safer when used as topical intranasal steroids than systemic preparations.
A low speed open circuit wind tunnel has been designed, manufactured and constructed at the
Mechanical Engineering Department at Baghdad University - College of Engineering. The work is one of
the pioneer projects adapted by the R & D Office at the Iraqi MOHESR. The present paper describes the
first part of the work; that is the design calculations, simulation and construction. It will be followed by a
second part that describes testing and calibration of the tunnel. The proposed wind tunnel has a test
section with cross sectional area of (0.7 x 0.7 m2) and length of (1.5 m). The maximum speed is about (70
m/s) with empty test section. The contraction ratio is (8.16). Three screens are used to minimize flow
distu
This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreMicrobiological contamination by fungi impacts the quality and safety of wheat grain storage. This study aimed to evaluate the efficacy of cold plasma in restricting the growth of the fungus, Aspergillus niger, which was isolated from wheat grains. A dielectric barrier discharge (DBD) operating at atmospheric pressure generated cold plasma that was used to treat the fungus, and the impact of this treatment was investigated at various periods 1, 2, 4, 6, and 15 minutes. The results revealed a highly significant decrease in the growth and number of spores of Aspergillus niger compared to the controls. This study revealed an efficient technique for enhancing wheat grain storage that could be a foundation for further large-scale studies.
... Show MoreHuman beings have an innate and natural aim to achieve their self-interests and to show their ability to overcome challenges in a better way, therefore the move towards self determination is expressed by intrinsic motivation. The desire of absorbing in this task is to enjoy the task in it self and benefitting from it such a motivation is the desire rooted in human nature to judge and choose in which individual is conscious in his self, abilities and adequacy that help him in control the different situations of life passed by him. His choices and actions are voluntary and non-restricted to intervention or external control because control is inner and subjective, while his behavior is self-regulated with the feeling of
... Show MoreA general velocity profile for a laminar flow over a flat plate with zero incidence is obtained by employing a new boundary condition to the other available boundary conditions. The general velocity profile is mathematically simple and nearest to the exact solution. Also other related values, boundary layer thickness, displacement thickness, momentum thickness and coefficient of friction are nearest to the exact solution compared with other corresponding values for other researchers.
Solar photovoltaic (PV) has many environmental benefits and it is considered to be a practical alternative to traditional energy generation. The electrical conversion efficiency of such systems is inherently limited due to the relatively high thermal resistance of the PV components. An approach for intensifying electrical and thermal production of air-type photovoltaic thermal (PVT) systems via applying a combination of fins and surface zigzags was proposed in this paper. This research study aims to apply three performance enhancers: case B, including internal fins; case C, back surface zigzags; and case D, combinations of fins and surface zigzags; whereas the baseline smooth duct rep
This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while
... Show MoreThis research investigates the pre- and post-cracking resistance of steel fiber-reinforced concrete specimens with Glass Fiber Reinforced Polymer (GFRP) bars subjected to flexural loading. The purpose is to modify the ductility and cracking resistance of GFRP-reinforced beams, which are prone to early cracking and excessive deflections instigated by the low modulus of elasticity of GFRP. Six self-compacting concrete specimens (1500×240×200 mm), incorporating steel fibers of two lengths (25 mm and 40 mm) with varying distribution depths, were tested to assess their structural performance. The results indicate significant enhancements in cracking resistance, stiffness, energy absorption, ductility, and flexural strength. Tested beam
... Show More