Polypyrrole (PPy) nanocomposites were prepared using chemical oxidation and were combined with manganese oxide (MnO2) nanoparticles. The PPY-MnO2 nanocomposite was synthesized by integrating PPy nanofibers with varying volume ratio percentages of MnO2 dopant (10, 30, and 50% vol. ratio). The structural features of the PPy and PPy-MnO2 nanocomposite were investigated using X-ray diffraction (XRD). Fourier transfor infrared (FTIR) spectroscopy was used to demonstrate the molecular structures of primary materials and the final product of PPy, MnO2, and PPy- MnO2 nanocomposites. Field Emission Scanning Electron Microscopy (FESEM) showed that the morphology of PPy consisted of a network of nanofibers. Increasing the volume ratios of manganese oxide added to the PPY nanofiber led to the increase of manganese oxide nanoparticles on the surface of the PPY nanofiber network. This resulted in a noticeable alteration in the structure of the nanocomposite. It has been observed that the nanocomposites demonstrate a significant level of pseudocapacitive activity. The highest capacitance of 236 F/g was observed when pure PPy was doped with 30% MnO2 compared to 125 F/g of the pure PPy.
--The objective of the current research is to identify: 1) Preparing a scale level for e-learning applications, 2) What is the relationship between the applications of e-learning and the students of the Department of Chemistry at the Faculty of Education for Pure Sciences/ Ibn Al-Haytham – University of Baghdad. To achieve the research objectives, the researcher used the descriptive approach because of its suitability to the nature of the study objectives. The researcher built a scale for e-learning applications that consists of (40) items on the five-point Likrat scale (I agree, strongly agree, neutral, disagree, strongly disagree). He also adopted the scale of scientific values, and it consists of (40) items on a five-point scale as wel
... Show MoreTechnological advances have yielded new molecular biology-based methods for the diagnosis of infectious diseases. The newest and most powerful molecular diagnostic tests are available at regional and national reference laboratories, as well as at specialized centers that are certified to conduct metagenomic testing. Metagenomic assays utilize advances in DNA extraction technology, DNA sequence library construction, high throughput DNA sequencing and automated data analysis to identify millions of individual strands of DNA extracted from clinical samples. At present, metagenomic assays are only possible at a small number of special research, academic and commercial laboratories. Continued research in human and path
... Show MoreThe green synthesis of nickel oxide nanoparticles (NiO-NP) was investigated using Ni(NO3)2 as a precursor, olive tree leaves as a reducing agent, and D-sorbitol as a capping agent. The structural, optical, and morphology of the synthesized NiO-NP have been characterized using ultraviolet–visible spectroscopy (UV-Vis), X-ray crystallography (XRD) pattern, Fourier transform infrared spectroscopy (FT-IR) and scanning electron microscope (SEM) analysis. The SEM analysis showed that the nanoparticles have a spherical shape and highly crystalline as well as highly agglomerated and appear as cluster of nanoparticles with a size range of (30 to 65 nm). The Scherrer relation has been used to estimate the crystallite size of NiO-NP which ha
... Show MoreWe report a new theranostic device based on lead sulfide quantum dots (PbS QDs) with optical emission in the near infrared wavelength range decorated with affibodies (small 6.5 kDa protein-based antibody replacements) specific to the cancer biomarker human epidermal growth factor receptor 2 (HER2), and zinc(II) protoporphyrin IX (ZnPP) to combine imaging, targeting and therapy within one nanostructure. Colloidal PbS QDs were synthesized in aqueous solution with a nanocrystal diameter of ∼5 nm and photoluminescence emission in the near infrared wavelength range. The ZHER2:432 affibody, mutated through the introduction of two cysteine residues at the C-terminus (
Vehicular Ad Hoc Networks (VANETs) are integral to Intelligent Transportation Systems (ITS), enabling real-time communication between vehicles and infrastructure to enhance traffic flow, road safety, and passenger experience. However, the open and dynamic nature of VANETs presents significant privacy and security challenges, including data eavesdropping, message manipulation, and unauthorized access. This study addresses these concerns by leveraging advancements in Fog Computing (FC), which offers lowlatency, distributed data processing near-end devices to enhance the resilience and security of VANET communications. The paper comprehensively analyzes the security frameworks for fog-enabled VANETs, introducing a novel taxonomy that c
... Show MoreA critical milestone in nano-biotechnology is establishing reliable and ecological friendly methods for fabricating metal oxide NPs. Because of their great biodegradable, electrical, mechanical, and optical qualities, zirconia NPs (ZrO2NPs) attract much interest among all zirconia NPs (ZrO2NPs). Zirconium oxide (ZrO2) has piqued the interest of researchers throughout the world, particularly since the development of methods for the manufacture of nano-sized particles. An extensive study into the creation of nanoparticles utilizing various synthetic techniques and their potential uses has been stimulated by their high luminous efficiency, wide bandgap, and high exciton binding energy. Zirconium dioxide nano
... Show MoreDeveloping and researching antenna designs are analogous to excavating in an undiscovered mine. This paper proposes a multi-band antenna with a new hexagonal ring shape, theoretically designed, developed, and analyzed using a CST before being manufactured. The antenna has undergone six changes to provide the best performance. The results of the surface current distribution and the electric field distribution on the surface of the hexagonal patch were theoretically analyzed and studied. The sequential approach taken to determine the most effective design is logical, and prevents deviation from the work direction. After comparing the six theoretical results, the fifth model proved to be the best for making a prototype. Measured results rep
... Show MoreReal Time Extended (RTX) technology works to take advantage of real-time data comes from the global network of tracking stations together with inventor locating and compression algorithms to calculate and relaying the orbit of satellite, satellite atomic clock, and any other systems corrections to the receivers, which lead to real-time correction with high accuracy. These corrections will be transferred to the receiver antenna by satellite (where coverage is available) and by IP (Internet Protocol) for the rest of world to provide the accurate location on the screen of smartphone or tablet by using specific software. The purpose of this study was to assess the accuracy of Global Navig