In this research, a new application has been developed for games by using the generalization of the separation axioms in topology, in particular regular, Sg-regular and SSg- regular spaces. The games under study consist of two players and the victory of the second player depends on the strategy and choice of the first player. Many regularity, Sg, SSg regularity theorems have been proven using this type of game, and many results and illustrative examples have been presented
Let h is Γ−(λ,δ) – derivation on prime Γ−near-ring G and K be a nonzero semi-group ideal of G and δ(K) = K, then the purpose of this paper is to prove the following :- (a) If λ is onto on G, λ(K) = K, λ(0) = 0 and h acts like Γ−hom. or acts like anti–Γ−hom. on K, then h(K) = {0}.(b) If h + h is an additive on K, then (G, +) is abelian.
Recently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreLet
, 1
( )
1 2 ,
( , ) 1 2
m n
s s
m n
f s s a e m n , (s it , j 1,2) j j j ,
m 1 and
n 1 being an increasing sequences of positive numbers and a E m n , where E
is Banach algebra, represent a vector valued entire Dirichlet functions in two
variables. The space of all such entire functions having order at most equal to
is considered in this paper. A metric topology using the growth parameters of f is
defined on and its various properties are obtained. The form of linear operator on
the space is characterized and proper bases are also characterized in terms of
growth parameters .
The aim of this paper is to introduce the definition of projective 3-space over Galois field GF(q), q = pm, for some prime number p and some integer m.
Also the definitions of (k,n)-arcs, complete arcs, n-secants, the index of the point and the projectively equivalent arcs are given.
Moreover some theorems about these notations are proved.
Let be an n-Banach space, M be a nonempty closed convex subset of , and S:M→M be a mapping that belongs to the class mapping. The purpose of this paper is to study the stability and data dependence results of a Mann iteration scheme on n-Banach space
Let
We study in this paper the composition operator of induced by the function ?(z)=sz+t where , and We characterize the normal composition operator C? on Hardy space H2 and other related classes of operators. In addition to that we study the essential normality of C? and give some other partial results which are new to the best of our knowledge.
The first aim in this paper is to introduce the definition of fuzzy absolute value on the vector space of all real numbers then basic properties of this space are investigated. The second aim is to prove some properties that finite dimensional fuzzy normed space have.
It is the dynamic tension between the relatively fixed built environment and the constantly changing in social life that determines the nature of urban spaces belonging to different historical periods, and considered as a tool for diagnosing transformations in urban spaces, that’s why, the characteristics of urban space became unclear between positive spaces and negative spaces, so emerged the need to study contemporary urban space belonging to the current period of time and show the most important transformations that have occurred in contemporary urban space to reach urban spaces that meet the current life requirements. Therefore, the research dealt with a study of the characteristics of contemporary urban space and the most pr
... Show More