Many academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Trees (DT), K-nearest neighbor (KNN), and Logistic Regression (LR), have been used to identify the parameters that allow for effective price estimation. These approaches were tested on a data set of an extensive Indian airline network. When it came to estimating flight prices, the results demonstrate that the Decision tree method is the best conceivable Algorithm for predicting the price of a flight in our particular situation with 89% accuracy. The SGD method had the lowest accuracy, which was 38 %, while the accuracies of the KNN, NB, ADA, and LR algorithms were 69 %, 45 %, and 43 %, respectively. This study's presented methodologies will allow airline firms to predict flight prices more accurately, enhance air travel, and eliminate delay dispersion. Index Terms— Machine learning, Prediction model, Airline price prediction, Software testing,
In this article, Convolution Neural Network (CNN) is used to detect damage and no damage images form satellite imagery using different classifiers. These classifiers are well-known models that are used with CNN to detect and classify images using a specific dataset. The dataset used belongs to the Huston hurricane that caused several damages in the nearby areas. In addition, a transfer learning property is used to store the knowledge (weights) and reuse it in the next task. Moreover, each applied classifier is used to detect the images from the dataset after it is split into training, testing and validation. Keras library is used to apply the CNN algorithm with each selected classifier to detect the images. Furthermore, the performa
... Show MoreThe need to constantly and consistently improve the quality and quantity of the educational system is essential. E-learning has emerged from the rapid cycle of change and the expansion of new technologies. Advances in information technology have increased network bandwidth, data access speed, and reduced data storage costs. In recent years, the implementation of cloud computing in educational settings has garnered the interest of major companies, leading to substantial investments in this area. Cloud computing improves engineering education by providing an environment that can be accessed from anywhere and allowing access to educational resources on demand. Cloud computing is a term used to describe the provision of hosting services
... Show MoreThe coefficient of performance of a window type Air-Conditioner system can be improved if a reduction in the work of compressor can be achieved by a suitable technique. The present study investigates the effect of dispersing a low concentration of TiO2 nanoparticles in the mineral oil based lubricant, as well as on the overall performance of a window type Air-Conditioner system using R22 as the working fluid. An enhancement in the COP of the refrigeration system has been observed and the existence of an optimum volume fraction noticed, with low concentrations of nanoparticles suspended in the mineral oil. Results showed that the average compressor work reduced by 13.3%, which ultimately resulted in an increase of 11.99% in the COP due to
... Show MoreThe importance of the research lies in knowing the effect of the exercises of the reciprocal method in developing some physical abilities in learning the performance of the players for the effectiveness of the long jump in an economical manner in terms of time and effort and knowing their positive impact and the extent of their impact in creating the required learning for students, and the research aims to prepare reciprocal style exercises in developing some abilities The researchers used the experimental method in the pre and post test for the experimental and control groups to suit the nature of the research, and the research community was identified for the long jump players, the Specialized School for Talent Care in the 2022 sports sea
... Show MoreThe current research aims to identify the effect of the program to develop the skill of friendship among kindergarten children, as well as the scope of the impact of the program on the sample. To achieve the objectives of the research, the researcher hypothesizes there is no significant difference between the average scores of the sample members on the friendship skill scale for the dimensional scale according to the experimental and control group. The research sample consisted of (60) girl and boy with age ranges (4-6) who were randomly selected from the Kindergarten Unity at Baghdad city/ Rusafa 1. The children were distributed into an experimental and control group, each group consists of (30) girl and boy. The two groups were chosen
... Show MoreGoal of research is to investigate the impact of the use of effective learning model in the collection of the fourth grade students/Department of physics in the material educational methods and the development of critical thinking .to teach this goal has been formulated hypothesis cefereeten zero subsidiary of the second hypothesis .To investigate the research hypothesis were selected sample of fourth-grade students of the department of physics at the univers
... Show MoreThis paper is concerned with introducing and studying the new approximation operators based on a finite family of d. g. 'swhich are the core concept in this paper. In addition, we study generalization of some Pawlak's concepts and we offer generalize the definition of accuracy measure of approximations by using a finite family of d. g. 's.