Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.
The existing investigation explains the consequence of irradiation of red laser on the optic properties of (CoO2) films. The film was equipped by the utilization of semi-computerized spray pyrolysis technique (SCSPT), it is the first time that this technique is used in the preparation and irradiation using a laser in this technique. From the XRD analysis, the crystalline existence with trigonal crystal system was when the received films were processed by continuous red laser (700 nm) with power (>1000mW)for different laser irradiation time using different number of times a laser scan (0, 6, 9, 12, 15 and 18 times) with total irradiation time(0,30,45,60,75,90 mi
Ternary semiconductors AB5C8 (A = Cu/Ag, B = In and C = S, Se or Te) have been investigated. The CuIn5S8 and AgIn5S8 have been synthesize in cubic spinel structure with space group (Fd3m), whereas CuIn5Se8, AgIn5Se8, CuIn5Te8 and AgIn5Te8 have tetragonal structures with space group P-42m. The relaxed crystal geometry, electrical properties such as electronic band structure and optoelectronic properties are predicted by using full potential method in this work. For the determination of relaxed crystal geometry, the gradient approximation (PBE-GGA) is used. All the studied compounds are semiconductors based on their band structures in agreement with the experimental results, and their bulk moduli are in the range 35 to 69 GPa. Wide absorption
... Show MoreIn this work, we have examined the spectral response of (p-CuAlSe2/n-Si) detector, (CAS) thin films deposited by thermal evaporation at RT with a thickness (450) nm, and annealing temperature at (473K) for 2 h. Optical transmission measurements displayed reasonably slight transmission besides higher absorbance trendy the visible region, energy gaps were observed by annealing, were found to be direct, and decreased with the effect of annealing. The extreme responsivity value arises at wavelength 459 nm, with improvement value of specific detectivity and quantum efficiency the annealing films be situated originate as greatest suitable aimed at numerous device application.
Significant advancements in nanoscale material efficiency optimization have made it feasible to substantially adjust the thermoelectric transport characteristics of materials. Motivated by the prediction and enhanced understanding of the behavior of two-dimensional (2D) bilayers (BL) of zirconium diselenide (ZrSe2), hafnium diselenide (HfSe2), molybdenum diselenide (MoSe2), and tungsten diselenide (WSe2), we investigated the thermoelectric transport properties using information generated from experimental measurements to provide inputs to work with the functions of these materials and to determine the
We report on using a CO2 (10.6 µm) laser to debond the lithium disilicate veneers. Sixty-four sound human premolar teeth and 64 veneer specimens were used in the study. The zigzag movement via CO2 laser handpiece along with an air-cooled jet to prevent temperature elevation above the necrosis temperature limit (5.5 C°) was applied. The optimal deboning irradiation time was super-fast, at about 5 seconds at 3 Watt CO2 laser power. It is 20 times less than any previously published work for veneers debonding. The enamel beneath the debonded veneers has been assessed by atomic force microscopy (AFM) and shear stress technique as criteria for the easiness of debonding. The
... Show MoreA nanocrystalline thin films of PbS with different thickness (400, 600)nm have been prepared successfully by chemical bath deposition technique on glass and Si substrates. The structure and morphology of these films were studied by X-ray diffraction and atomic force microscope. It shows that the structure is polycrystalline and the average crystallite size has been measured. The electrical properties of these films have been studied, it was observed that D.C conductivity at room temperature increases with the increase of thickness, From Hall measurements the conductivity for all samples of PbS films is p-type. Carrier's concentration, mobility and drift velocity increases with increasing of thickness. Also p-PbS/n-Si heterojunction has been
... Show MoreBy using vacuum evaporation, thin films of the (CdS)0.75-(PbS)0.25 alloy have been deposited to form a nanocrystalline composite. Investigations were made into the morphology, electrical, optical and I-V characteristics of (CdS)0.75-(PbS)0.25 films asdeposited and after annealing at various temperatures. According to AFM measurements, the values of grain sizes rise as annealing temperatures rise, showing that the films' crystallinity has been increased through heat treatment. In addition, heat treatment results in an increase in surface roughness values, suggesting rougher films that could be employed in more applications. The prepared films have direct energy band gaps, and these band gaps increase with the increase in the degrees
... Show MoreAnodic electrodeposition was used to synthesize a composite electrode of nanostructured manganese dioxide/carbon fiber (CF) galvanostatically. Different characterization results of the nanostructured MnO2 were obtained by varying the H2SO4 concentration and the current density. Field emission scanning electron microscopy, X‐ray diffraction, and atomic force microscopy were utilized to characterize the prepared composite electrodes. The best conditions were: 0.3 mA cm−2 current density and 0.64 M H2SO4 concentration. The electrosorption performance of the MnO