Preferred Language
Articles
/
wha09ooBVTCNdQwCGMU3
Kinetic modeling of a solar photo-electro-Fenton process for treating petroleum refinery wastewater
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Mon Jan 01 2018
Journal Name
Journal Of Physics Conference Series
Enhanced phot-respons of porous silicon photo- detectors by embedding Titanium -dioxide nano-particles
...Show More Authors

: Porous silicon (n-PS) films can be prepared by photoelectochemical etching (PECE) Silicon chips n - types with 15 (mA /cm2), in15 minutes etching time on the fabrication nano-sized pore arrangement. By using X-ray diffraction measurement and atomic power microscopy characteristics (AFM), PS was investigated. It was also evaluated the crystallites size from (XRD) for the PS nanoscale. The atomic force microscopy confirmed the nano-metric size chemical fictionalization through the electrochemical etching that was shown on the PS surface chemical composition. The atomic power microscopy checks showed the roughness of the silicon surface. It is also notified (TiO2) preparation nano-particles that were prepared by pulse laser eradication in e

... Show More
Publication Date
Wed Jul 01 2015
Journal Name
Journal Of Engineering
A comparative Isothermal and Kinetic Study of the Adsorption of Lead (II) from Solution by Activated Carbon and Bentonite
...Show More Authors

This work is aiming to study and compare the removal of lead (II) from simulated wastewater by activated carbon and bentonite as adsorbents with particle size of 0.32-0.5 mm. A mathematical model was applied to describe the mass transfer kinetic.

The batch experiments were carried out to determine the adsorption isotherm constants for each adsorbent, and five isotherm models were tested to choose the best fit model for the experimental data. The pore, surface diffusion coefficients and mass transfer coefficient were found by fitting the experimental data to a theoretical model. Partial differential equations were used to describe the adsorption in the bulk and solid phases. These equations were simplified and the

... Show More
View Publication Preview PDF
Publication Date
Mon May 23 2022
Journal Name
The International Journal Of Artificial Organs
Quantitative analysis and control of the torque profile of the upper limb using a kinetic model and motion measurements
...Show More Authors

This paper investigates a new approach to the rapid control of an upper limb exoskeleton actuator. We used a mathematical model and motion measurements of a human arm to estimate joint torque as a means to control the exoskeleton’s actuator. The proposed arm model is based on a two-pendulum configuration and is used to obtain instantaneous joint torques which are then passed into control law to regulate the actuator torque. Nine subjects volunteered to take part in the experimental protocol, in which inertial measurement units (IMUs) and a digital goniometer were used to measure and estimate the torque profiles. To validate the control law, a Simscape model was developed to simulate the arm model and control law in which measurem

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
International Journal Of Emerging Technologies In Learning
The Effect of Cognitive Modeling in Mathematics Achievement and Creative Intelligence for High School Students
...Show More Authors

Scopus (7)
Scopus
Publication Date
Mon Jun 05 2023
Journal Name
Journal Of Engineering
Simulation and Modeling of Detailed Load flow Analysis for the 400kVA and 132kVA Iraqi Grid
...Show More Authors

A load flow program is developed using MATLAB and based on the Newton–Raphson method,which shows very fast and efficient rate of convergence as well as computationally the proposed method is very efficient and it requires less computer memory through the use of sparsing method and other methods in programming to accelerate the run speed to be near the real time.
The designed program computes the voltage magnitudes and phase angles at each bus of the network under steady–state operating conditions. It also computes the power flow and power losses for all equipment, including transformers and transmission lines taking into consideration the effects of off–nominal, tap and phase shift transformers, generators, shunt capacitors, sh

... Show More
View Publication Preview PDF
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Modeling and Simulation for Performance Evaluation of Optical Quantum Channels in Quantum key Distribution Systems
...Show More Authors

In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 p

... Show More
View Publication Preview PDF
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Modeling and Simulation for Performance Evaluation of Optical Quantum Channels in Quantum key Distribution Systems
...Show More Authors

In this research work, a simulator with time-domain visualizers and configurable parameters using a continuous time simulation approach with Matlab R2019a is presented for modeling and investigating the performance of optical fiber and free-space quantum channels as a part of a generic quantum key distribution system simulator. The modeled optical fiber quantum channel is characterized with a maximum allowable distance of 150 km with 0.2 dB/km at =1550nm. While, at =900nm and =830nm the attenuation values are 2 dB/km and 3 dB/km respectively. The modeled free space quantum channel is characterized at 0.1 dB/km at =860 nm with maximum allowable distance of 150 km also. The simulator was investigated in terms of the execution of the BB84 prot

... Show More
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Mon May 01 2023
Journal Name
Ain Shams Engineering Journal
Neural network modeling of rutting performance for sustainable asphalt mixtures modified by industrial waste alumina
...Show More Authors

Scopus (18)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Wed Sep 01 2021
Journal Name
Baghdad Science Journal
New Method for Estimation Mebeverine Hydrochloride Drugs Preparation by a New Analyser: Ayah 6S.X1(WSLEDs)-T.- Two Solar Cells Complied with C.F.I.A
...Show More Authors

A sensitivity-turbidimetric method at (0-180o) was used for detn. of mebeverine in drugs by two solar cell and six source  with C.F.I.A.. The method was based on the formation  of  ion pair for the pinkish banana color  precipitate by the reaction of Mebeverine hydrochloride with Phosphotungstic acid. Turbidity was measured via the reflection of incident light that collides on the surface particles of   precipitated at 0-180o. All variables were optimized. The linearity ranged of Mebeverine hydrochloride was 0.05-12.5mmol.L-1, the L.D. (S/N= 3)(3SB) was 521.92 ng/sample depending on dilution for the minimum concentration , with correlation coefficient r = 0.9966while was R.S.D%

... Show More
View Publication Preview PDF
Scopus (7)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Fri Aug 30 2024
Journal Name
Iraqi Journal Of Science
The Dissipation of the Kinetic Energy for 2D Bounded Flow by Using Moment-Based Boundary Conditions with Burnett Order Stress for LBM
...Show More Authors

     In this article, the lattice Boltzmann method with two relaxation time  (TRT)  for the  D2Q9 model is used to investigate numerical results for 2D flow. The problem is performed to show the dissipation of the kinetic energy rate and its relationship with the enstrophy growth for 2D dipole wall collision. The investigation is carried out for normal collision and oblique incidents at an angle of . We prove the accuracy of moment -based boundary conditions with slip and Navier-Maxwell slip conditions to simulate this flow. These conditions are under the effect of Burnett-order stress conditions that are consistent with the discrete Boltzmann equation. Stable results are found by using this kind of boundary condition where d

... Show More
Scopus Crossref