Ground-based active optical sensors (GBAOS) have been successfully used in agriculture to predict crop yield potential (YP) early in the season and to improvise N rates for optimal crop yield. However, the models were found weak or inconsistent due to environmental variation especially rainfall. The objectives of the study were to evaluate if GBAOS could predict YP across multiple locations, soil types, cultivation systems, and rainfall differences. This study was carried from 2011 to 2013 on corn (Zea mays L.) in North Dakota, and in 2017 in potatoes in Maine. Six N rates were used on 50 sites in North Dakota and 12 N rates on two sites, one dryland and one irrigated, in Maine. Two active GBAOS used for this study were GreenSeeker and Holland Scientific Crop Circle Sensor ACS 470 (HSCCACS-470) and 430 (HSCCACS-430). Rainfall data, with or without including crop height, improved the YP models in term of reliability and consistency. The polynomial model was relatively better compared to the exponential model. A significant difference in the relationship between sensor reading multiplied by rainfall data and crop yield was observed in terms of soil type, clay and medium textured, and cultivation system, conventional and no-till, respectively, in the North Dakota corn study. The two potato sites in Maine, irrigated and dryland, performed differently in terms of total yield and rainfall data helped to improve sensor YP models. In conclusion, this study strongly advocates the use of rainfall data while using sensor-based N calculator algorithms.
There is of great importance to know the values of the optical constants of materials due to their relationship with the optical properties and then with their practical applications. For this reason, it was proposed to study the optical constants of amorphous silicon nanostructures (quantum well, quantum wire, and quantum dot) because of their importance in the world of optical applications. In this study, it was adopted the Herve and Vandamme (HV) model of the refractive index because it was found that this model has very good optical properties for almost all semiconductors. Also, it was carried out by applying experimental results for the energy gaps of these three nanostructures, which makes the results of the theoretical calculations
... Show MoreIn this paper, a step-index fiber with core index 1.445 5 1 7 and cladding index 1.443 1 5 7 has been designed and studied. Multimode operation is achieved by using a fiber with core radius 25 μm operating at a wavelength of 1.3 μm. The mode parameters (effective refractive index, phase constant, fractional modal power in the core and cutoff wavelength) were calculated using RP fiber calculator (PRO version 2020). The shapes of the intensity and amplitude distribution of linearly polarized guided modes were shown.
The Manganese (Mn) thin films of obliquely and normal deposited were prepared by using thermal evaporation method at pressure 10-5 torr on glass substrate at room temperature. The optical properties of normal and obliquely deposited films are studied and also the effect of deposition angle on these properties. The deposition angle has great influence on the increase of the absorbance, absorption coefficient, extinction coefficient and imaginary dielectric constant and the decrease of the transmittance, reflectance, refractive index and real dielectric constant.
In the present work, a Z-scan technique was used to study the nonlinear optical properties, represented by the nonlinear refractive index and nonlinear absorption coefficients of the Ag nanoparticles. In this technique, a pulsed second harmonic Nd :YAG laser at wavelength 532 nm was used. The results show that the nonlinear refractive index and nonlinear absorption coefficients of the Ag nanoparticles are found to be dependent on the size these nanoparticles.
Palladium nanoparticles are produced by Polyol method. The characterization of the Pd nanoparticle has been conducted by various techniques such as SEM and AFM. The results of Pd powder showed that the particle size is directly proportional to the temperature and the reaction time. The optimum conditions for obtaining minimum nanoparticles size are 45 oC reaction temperature and 60 min reaction time and the smaller particle size achieved is equal to 25 nm. The optical limiting of smaller size nanoparticles has been studied. The palladium nanoparticles appear to be attractive candidates for optical limiting applications.
In this work, the linear properties of Vitamin D3-5000IU soft gel were investigated by measuring its absorption and fluorescence spectra. It was observed that there was a shift towards longer wavelength within limits (75 nm), with quantitative efficiency equal to (33.58%). The values of absorbance were used to calculate the extinction coefficient, optical refractive index, optical conductivity and optical dielectric constant values.
The non-linear properties of Vitamin D3-5000IU soft gel was also studied using the Z-Scan technique by using Neodymium-doped Yttrium Garnet (Nd: YAG) continuous laser (CW) emitting in &n
... Show MoreIn this paper it was designed a new fractal optical modulation by using a new iteration of fractal function, the result was analyzed by MTF evaluation, and it compared with results of normal optical modulation.
The normal and fractal optical modulator is a circular disc which has a radius R=9cm, both of them consist of twenty sectors, ten sectors are opaque and the other ten sectors are transmitted for the light.
The fractal optical modulator contains two patterns, the pattern two can be used to detect the target, and pattern one can be used to lock the target
The best similarity of MTF behavior for normal and fractal Reticle was evaluating the power transparent depends on the size o
... Show MoreThe optical transmission and absorption spectra in UV-VIS were recorded in the wavelength range 350-800 nm for different glass compositions in the system: (CuO)x (PbO)50-x (Bi2O3)50 (x=2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0). Absorption coefficient {α (λ)}, optical energy gap (Eopt), refractive index (n), optical dielectric constant (ε`), Urbach energy (Ee), constant B and ratio of carrier concentration to the effective mass (N/m) have been reported. The effects of compositions of glasses on these parameters have been discussed. It has been indicated that a small compositional modification of the glasses lead to an important change in all the optical properties including non-linear behavior. The optical parameters were found to b
... Show MoreIn this study, we focused on the random coefficient estimation of the general regression and Swamy models of panel data. By using this type of data, the data give a better chance of obtaining a better method and better indicators. Entropy's methods have been used to estimate random coefficients for the general regression and Swamy of the panel data which were presented in two ways: the first represents the maximum dual Entropy and the second is general maximum Entropy in which a comparison between them have been done by using simulation to choose the optimal methods.
The results have been compared by using mean squares error and mean absolute percentage error to different cases in term of correlation valu
... Show More