We aimed to obtain magnesium/iron (Mg/Fe)-layered double hydroxides (LDHs) nanoparticles-immobilized on waste foundry sand-a byproduct of the metal casting industry. XRD and FT-IR tests were applied to characterize the prepared sorbent. The results revealed that a new peak reflected LDHs nanoparticles. In addition, SEM-EDS mapping confirmed that the coating process was appropriate. Sorption tests for the interaction of this sorbent with an aqueous solution contaminated with Congo red dye revealed the efficacy of this material where the maximum adsorption capacity reached approximately 9127.08 mg/g. The pseudo-first-order and pseudo-second-order kinetic models helped to describe the sorption measurements, indicating that the physical and chemical forces governed the removal process.
To study the removal of lead (Pb) ions from aqueous solutions, novel magnetite nanoparticles (NPs) of Ni0.31Mg0.15Ag0.04Fe2.5O4 were synthesized by coprecipitation synthesis using metal sulfates, and then coated with Gum Arabic (GA). The prepared NPs were analyzed using various spectroscopic and analytical methods, such as X-Ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX), Fourier Transform Infra-Red spectroscopy (FT-IR), and Atomic Absorption Spectrophotometer (AAS). By using XRD analysis, the cubic inverse spinel structure of the prepared NPs was proven, showing average values of crystallite size, latt
... Show MoreEffluent from incompetent wastewater treatment plants (WWTPs) contains a great variety of pollutants so support water treatments are essential. The present work studies the removal of phosphate species from aqueous solutions by adsorption on to spherical Calcined Sand -Clay mixture (CSCM) used a natural, local and low-cost adsorbent. Batch experiments were performed to estimate removal efficiency of phosphate. The adsorption experiments were carried out as function of pH, dose of adsorbent, initial concentration, temperature and time of adsorption. The efficient removal was accomplished for pH between 10 and 12. The experimental results also showed that the removal of phosphate by (CSCM) was rapid (the % removal 98.9%, 92%, 90%, 89% in 6
... Show MoreThis paper includes the modification of the attapulgite by precipitation of iron and aluminum compounds . Attapulgite (Atta) and modified attapulgite (Atta-m) clays are characterized by many techniques ( FTIR , XRD ,SEM with EDX ) .The attapulgite clay before and after modification were used as the adsorbents for adsorption of methyl green (MG) . The results Indicate ,that the percentage of removal (MG) at equilibrium by using (Atta) and (Atta-m) clay were reached to 94% and 97% respectively. Indicating that the clay modification process was in addition to a relative improvement in the adsorption potential of the clay after modification.
A new application of a combined solvent extraction and two-phase biodegradation processes using two-liquid phase partitioning bioreactor (TLPPB) technique was proposed and developed to enhance the cleanup of high concentration of crude oil from aqueous phase using acclimated mixed culture in an anaerobic environment. Silicone oil was used as the organic extractive phase for being a water-immiscible, biocompatible and non-biodegradable. Acclimation, cell growth of mixed cultures, and biodegradation of crude oil in aqueous samples were experimentally studied at 30±2ºC. Anaerobic biodegradation of crude oil was examined at four different initial concentrations of crude oil including 500, 1000, 2000, and 5000 mg/L. Complete removal of crud
... Show MoreWaste materials might be utilized in various applications, such as sustainable roller compacted concrete pavements (RCCP), to lessen the negative environmental consequences of construction waste. The impacts of utilizing (brick, thermostone, granite, and ceramic) powders on the mechanical characteristics of RCCP are investigated in this study. To achieve this, the waste materials were crushed, grounded, and blended before being utilized as filler in the RCCP. After the mixes were prepared, compressive strength, splitting tensile strength, flexural strength, water absorption, density, and porosity were all determined. According to the research results, adding some of these powders, mainly brick and granite powder, enhances the mechanical
... Show MoreThe presence of construction wastes such as clay bricks, glass, wood, plastic, and others in large quantities causes serious environmental problems in the world. Where these wastes can be used to preserve the natural resources used in construction and reduce the impact of this problem on the environment, it also works to reduce the problem of high loads of concrete blocks. Clay bricks aggregate (AB) can be recycled as coarse aggregate and replaced with volumetric proportions of coarse aggregate by ( 5% and 10%), as well as the use of clay brick powder (PB) by replacing its weight of cement (5% and 10%) and reduced in the manufacture of concrete blocks (blocks). Four mixtures will be prepared and tested to learn how to re
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions.
... Show MoreThis investigation aims to explore the potential of waterworks sludge (WS), low-cost byproduct of water treatment processes, as a sorbent for removing Congo Red (CR) dyes. This will be achieved by precipitating nano-sized (MgAl-LDH)-layered double hydroxide onto the surface of the sludge. The efficiency of utilizing MgAl-LDH to modify waterworks sludge (MWS) for use in permeable reactive barrier technology was confirmed through analysis with Fourier transform infrared and X-ray diffraction. The isotherm model was employed to elucidate the adsorption mechanisms involved in the process. Furthermore, the COMSOL model was utilized to establish a continuous testing model for the analysis of contaminant transport under diverse conditions. A st
... Show MoreThe uptake of Cd(II) ions from simulated wastewater onto olive pips was modeled using artificial neural network (ANN) which consisted of three layers. Based on 112 batch experiments, the effect of contact time (10-240 min), initial pH (2-6), initial concentration (25-250 mg/l), biosorbent dosage (0.05-2 g/100 ml), agitation speed (0-250 rpm) and temperature (20-60ºC) were studied. The maximum uptake (=92 %) of Cd(II) was achieved at optimum parameters of 60 min, 6, 50 mg/l, 1 g/100 ml, 250 rpm and 25ºC respectively.
Tangent sigmoid and linear transfer functions of ANN for hidden and output layers respectively with 7 neurons were sufficient to present good predictions for cadmium removal efficiency with coefficient of correlatio
... Show MoreRemoval of heavy metals from waste water has received a great deal of attention. The compare Cr
(VI) adsorption characteristics removing from wastewater by using thermally modified and non-modified
eggshells were examined