Artificial Neural Networks (ANN) is one of the important statistical methods that are widely used in a range of applications in various fields, which simulates the work of the human brain in terms of receiving a signal, processing data in a human cell and sending to the next cell. It is a system consisting of a number of modules (layers) linked together (input, hidden, output). A comparison was made between three types of neural networks (Feed Forward Neural Network (FFNN), Back propagation network (BPL), Recurrent Neural Network (RNN). he study found that the lowest false prediction rate was for the recurrentt network architecture and using the Data on graduate students at the College of Administration and Economics, University of Baghdad for the period from 2014-2015 to The academic year 2017-2018. The variables are use in the research is (student’s success, age, gender, job, type of study (higher diploma, master’s, doctorate), specialization (statistics, economics, accounting, industry management, administrative management, and public administration) and channel acceptance). It became clear that the best variables that affect the success of graduate students are the type of study, age and job.
The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope
... Show MoreIn this paper, some commonly used hierarchical cluster techniques have been compared. A comparison was made between the agglomerative hierarchical clustering technique and the k-means technique, which includes the k-mean technique, the variant K-means technique, and the bisecting K-means, although the hierarchical cluster technique is considered to be one of the best clustering methods. It has a limited usage due to the time complexity. The results, which are calculated based on the analysis of the characteristics of the cluster algorithms and the nature of the data, showed that the bisecting K-means technique is the best compared to the rest of the other methods used.
Human beings are starting to benefit from the technology revolution that witness in our time. Where most researchers are trying to apply modern sciences in different areas of life to catch up on the benefits of these technologies. The field of artificial intelligence is one of the sciences that simulate the human mind, and its applications have invaded human life. The sports field is one of the areas that artificial intelligence has been introduced. In this paper, artificial intelligence technology Fast-DTW (Fast-Dynamic Time Warping) algorithm was used to assess the skill performance of some karate skills. The results were shown that the percentage of improvement in the skill performance of Mai Geri is 100%.
This study is due to insufficient development of the issues of initial training in tennis at youthful (student) age. Objective: development of a methodological and scientific-methodological base of students' tennis with current trends in tennis. Summing up the best practices of modern tennis, we came to the conclusion that the formation of the art of reflection backhands in teaching beginner students of sports specialization to achieve future success. In modern conditions in the development of Russian tennis student opens the possibility of using new technologies and programs. Using these approaches, we have developed a training program and tested students' tennis in the pedagogical experiment, which resulted in its effectiveness.
The objective of this study is to apply Artificial Neural Network for heat transfer analysis of shell-and-tube heat exchangers widely used in power plants and refineries. Practical data was obtained by using industrial heat exchanger operating in power generation department of Dura refinery. The commonly used Back Propagation (BP) algorithm was used to train and test networks by divided the data to three samples (training, validation and testing data) to give more approach data with actual case. Inputs of the neural network include inlet water temperature, inlet air temperature and mass flow rate of air. Two outputs (exit water temperature to cooling tower and exit air temperature to second stage of air compressor) were taken in ANN.
... Show MoreRadiation therapy plays an important role in improving breast cancer cases, in order to obtain an appropriateestimate of radiation doses number given to the patient after tumor removal; some methods of nonparametric regression werecompared. The Kernel method was used by Nadaraya-Watson estimator to find the estimation regression function forsmoothing data based on the smoothing parameter h according to the Normal scale method (NSM), Least Squared CrossValidation method (LSCV) and Golden Rate Method (GRM). These methods were compared by simulation for samples ofthree sizes, the method (NSM) proved to be the best according to average of Mean Squares Error criterion and the method(LSCV) proved to be the best according to Average of Mean Absolu
... Show MoreIn this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of B
... Show MoreIn this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of Bayes est
... Show More
We have presented the distribution of the exponentiated expanded power function (EEPF) with four parameters, where this distribution was created by the exponentiated expanded method created by the scientist Gupta to expand the exponential distribution by adding a new shape parameter to the cumulative function of the distribution, resulting in a new distribution, and this method is characterized by obtaining a distribution that belongs for the exponential family. We also obtained a function of survival rate and failure rate for this distribution, where some mathematical properties were derived, then we used the method of maximum likelihood (ML) and method least squares developed (LSD)
... Show More
The logistic regression model of the most important regression models a non-linear which aim getting estimators have a high of efficiency, taking character more advanced in the process of statistical analysis for being a models appropriate form of Binary Data.
Among the problems that appear as a result of the use of some statistical methods I
... Show More