Preferred Language
Articles
/
wRg8wZQBVTCNdQwCah8M
Classification of oral cavity cancer using linear discriminant analysis (LDA) and principal component analysis (PCA)
...Show More Authors

Crossref
View Publication
Publication Date
Sat Oct 01 2022
Journal Name
Al–bahith Al–a'alami
Employing Statistical Analysis in Public Relations Researches: (An Analytical Study of the Theses and Dissertations of Public Relations for the Period from 2005 to 2012)
...Show More Authors

 

Public relations are amongst the social sciences that rely on scientific methods in achieving new knowledge or resolving existing problems by means of its scientific researches that are often applied and require a classification in terms of their results’ analysis. It also requires subtle statistical processes whether in constructing their material or in analyzing and interpreting their results.

This research seeks to identify the relation between public relations and statistics, and the significance a researcher or practitioner in the domain of public relations should assign to statistics being one of the important criteria in identifying the accuracy and object

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Feb 25 2024
Journal Name
Baghdad Science Journal
Research on Emotion Classification Based on Multi-modal Fusion
...Show More Authors

Nowadays, people's expression on the Internet is no longer limited to text, especially with the rise of the short video boom, leading to the emergence of a large number of modal data such as text, pictures, audio, and video. Compared to single mode data ,the multi-modal data always contains massive information. The mining process of multi-modal information can help computers to better understand human emotional characteristics. However, because the multi-modal data show obvious dynamic time series features, it is necessary to solve the dynamic correlation problem within a single mode and between different modes in the same application scene during the fusion process. To solve this problem, in this paper, a feature extraction framework of

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Tue May 01 2018
Journal Name
Journal Of Physics: Conference Series
Multispectral and Panchromatic used Enhancement Resolution and Study Effective Enhancement on Supervised and Unsupervised Classification Land – Cover
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sat Feb 18 2023
Journal Name
Iraqi Journal Of Pharmaceutical Sciences
Preparation and In-Vitro Evaluation of Floating Oral In- Situ Gel of Montelukast Sodium (Conference Paper) #
...Show More Authors

Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Mathematics & Computer Science
The Use of Gradient Based Features for Woven Fabric Images Classification
...Show More Authors

View Publication
Crossref
Publication Date
Sat Nov 28 2020
Journal Name
Iraqi Journal Of Science
Survey Based Study: Classification of Patients with Alzheimer’s Disease
...Show More Authors

 Neuroimaging is a description, whether in two-dimensions (2D) or three-dimensions (3D), of the structure and functions of the brain. Neuroimaging provides a valuable diagnostic tool, in which a limited approach is used to create images of the focal sensory system by medicine professionals. For the clinical diagnosis of patients with Alzheimer's Disease (AD) or Mild Cognitive Impairs (MCI), the accurate identification of patients from normal control persons (NCs) is critical. Recently, numerous researches have been undertaken on the identification of AD based on neuroimaging data, including images with radiographs and algorithms for master learning. In the previous decade, these techniques were also used slowly to differentiate AD a

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Aug 01 2015
Journal Name
2015 Ieee Conference On Computational Intelligence In Bioinformatics And Computational Biology (cibcb)
Granular computing approach for the design of medical data classification systems
...Show More Authors

View Publication
Scopus (4)
Crossref (3)
Scopus Crossref
Publication Date
Sun Mar 04 2018
Journal Name
Iraqi Journal Of Science
Classification of k-Sets in PG(1,25), for k=4,…,13
...Show More Authors

A -set in the projective line is a set of  projectively distinct points. From the fundamental theorem over the projective line, all -sets are projectively equivalent. In this research, the inequivalent -sets in have been computed and each -set classified to its -sets where  Also, the  has been splitting into two distinct -sets, equivalent and inequivalent.

View Publication Preview PDF
Publication Date
Thu Nov 30 2023
Journal Name
Iraqi Journal Of Science
Effect of Genetic Algorithm as a Feature Selection for Image Classification
...Show More Authors

     Analysis of image content is important in the classification of images, identification, retrieval, and recognition processes. The medical image datasets for content-based medical image retrieval (  are large datasets that are limited by high computational costs and poor performance. The aim of the proposed method is to enhance this image retrieval and classification by using a genetic algorithm (GA) to choose the reduced features and dimensionality. This process was created in three stages. In the first stage, two algorithms are applied to extract the important features; the first algorithm is the Contrast Enhancement method and the second is a Discrete Cosine Transform algorithm. In the next stage, we used datasets of the medi

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Jan 04 2022
Journal Name
Iraqi Journal Of Science
Proposed Handwriting Arabic Words classification Based On Discrete Wavelet Transform and Support Vector Machine
...Show More Authors

A proposed feature extraction algorithm for handwriting Arabic words. The proposed method uses a 4 levels discrete wavelet transform (DWT) on binary image. sliding window on wavelet space and computes the stander derivation for each window. The extracted features were classified with multiple Support Vector Machine (SVM) classifiers. The proposed method simulated with a proposed data set from different writers. The experimental results of the simulation show 94.44% recognition rate.

View Publication Preview PDF