Preferred Language
Articles
/
wRfOnpIBVTCNdQwCwrru
Epileptic EEG activity detection for children using entropy-based biomarkers
...Show More Authors

Scopus Crossref
View Publication
Publication Date
Sun Nov 01 2020
Journal Name
Iraqi Journal For Electrical And Electronic Engineering
A Systematic Review of Brain-Computer Interface Based EEG
...Show More Authors

The futuristic age requires progress in handwork or even sub-machine dependency and Brain-Computer Interface (BCI) provides the necessary BCI procession. As the article suggests, it is a pathway between the signals created by a human brain thinking and the computer, which can translate the signal transmitted into action. BCI-processed brain activity is typically measured using EEG. Throughout this article, further intend to provide an available and up-to-date review of EEG-based BCI, concentrating on its technical aspects. In specific, we present several essential neuroscience backgrounds that describe well how to build an EEG-based BCI, including evaluating which signal processing, software, and hardware techniques to use. Individu

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Tue Jul 01 2014
Journal Name
Computer Engineering And Intelligent Systems
Static Analysis Based Behavioral API for Malware Detection using Markov Chain
...Show More Authors

Researchers employ behavior based malware detection models that depend on API tracking and analyzing features to identify suspected PE applications. Those malware behavior models become more efficient than the signature based malware detection systems for detecting unknown malwares. This is because a simple polymorphic or metamorphic malware can defeat signature based detection systems easily. The growing number of computer malwares and the detection of malware have been the concern for security researchers for a large period of time. The use of logic formulae to model the malware behaviors is one of the most encouraging recent developments in malware research, which provides alternatives to classic virus detection methods. To address the l

... Show More
Publication Date
Thu Oct 01 2020
Journal Name
Journal Of Engineering Science And Technology
Automatic voice activity detection using fuzzy-neuro classifier
...Show More Authors

Voice Activity Detection (VAD) is considered as an important pre-processing step in speech processing systems such as speech enhancement, speech recognition, gender and age identification. VAD helps in reducing the time required to process speech data and to improve final system accuracy by focusing the work on the voiced part of the speech. An automatic technique for VAD using Fuzzy-Neuro technique (FN-AVAD) is presented in this paper. The aim of this work is to alleviate the problem of choosing the best threshold value in traditional VAD methods and achieves automaticity by combining fuzzy clustering and machine learning techniques. Four features are extracted from each speech segment, which are short term energy, zero-crossing rate, auto

... Show More
View Publication Preview PDF
Scopus (6)
Scopus
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
IMPROVED IMAGE COMPRESSION BASED WAVELET TRANSFORM AND THRESHOLD ENTROPY
...Show More Authors

In this paper, a method is proposed to increase the compression ratio for the color images by
dividing the image into non-overlapping blocks and applying different compression ratio for these
blocks depending on the importance information of the block. In the region that contain important
information the compression ratio is reduced to prevent loss of the information, while in the
smoothness region which has not important information, high compression ratio is used .The
proposed method shows better results when compared with classical methods(wavelet and DCT).

View Publication Preview PDF
Crossref
Publication Date
Thu Jan 13 2022
Journal Name
Medical & Biological Engineering & Computing
An integrated entropy-spatial framework for automatic gender recognition enhancement of emotion-based EEGs
...Show More Authors

View Publication
Scopus (11)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Working Memory Classification Enhancement of EEG Activity in Dementia: A Comparative Study
...Show More Authors

The purpose of the current investigation is to distinguish between working memory ( ) in five patients with vascular dementia ( ), fifteen post-stroke patients with mild cognitive impairment ( ), and fifteen healthy control individuals ( ) based on background electroencephalography (EEG) activity. The elimination of EEG artifacts using wavelet (WT) pre-processing denoising is demonstrated in this study. In the current study, spectral entropy ( ), permutation entropy ( ), and approximation entropy ( ) were all explored. To improve the  classification using the k-nearest neighbors ( NN) classifier scheme, a comparative study of using fuzzy neighbourhood preserving analysis with -decomposition ( ) as a dimensionality reduction technique an

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jul 01 2023
Journal Name
Journal Of Engineering
Material Selection for Unmanned Aerial Vehicles (UAVs) Wings Using Ashby Indices Integrated with Grey Relation Analysis Approach Based on Weighted Entropy for Ranking
...Show More Authors

The designer must find the optimum match between the object's technical and economic needs and the performance and production requirements of the various material options when choosing material for an engineering application. This study proposes an integrated (hybrid) strategy for selecting the optimal material for an engineering design depending on design requirements. The primary objective is to determine the best candidate material for the drone wings based on Ashby's performance indices and then rank the result using a grey relational technique with the entropy weight method. Aluminum alloys, titanium alloys, composites, and wood have been suggested as suitable materials for manufacturing drone wings. The requirement

... Show More
View Publication Preview PDF
Crossref
Publication Date
Thu Jun 29 2023
Journal Name
Iraqi Journal Of Computer, Communication, Control And System Engineering
Recognition of Upper Limb Movements Based on Hybrid EEG and EMG Signals for Human-Robot Interaction
...Show More Authors

Upper limb amputation is a condition that severely limits the amputee’s movement. Patients who have lost the use of one or more of their upper extremities have difficulty performing activities of daily living. To help improve the control of upper limb prosthesis with pattern recognition, non-invasive approaches (EEG and EMG signals) is proposed in this paper and are integrated with machine learning techniques to recognize the upper-limb motions of subjects. EMG and EEG signals are combined, and five features are utilized to classify seven hand movements such as (wrist flexion (WF), outward part of the wrist (WE), hand open (HO), hand close (HC), pronation (PRO), supination (SUP), and rest (RST)). Experiments demonstrate that usin

... Show More
View Publication
Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Ieee Access
Multichannel Optimization With Hybrid Spectral- Entropy Markers for Gender Identification Enhancement of Emotional-Based EEGs
...Show More Authors

View Publication
Scopus (20)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Sun Dec 31 2023
Journal Name
Iraqi Journal Of Information And Communication Technology
EEG Signal Classification Based on Orthogonal Polynomials, Sparse Filter and SVM Classifier
...Show More Authors

This work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it

... Show More
View Publication Preview PDF
Crossref