Abstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influence of gas flow rate on gas temperature in the plasma jet. It is observed that gas temperature gradually drops with a growth in the flow rate of argon gas. The voltage and current waves have a sinusoidal waveform without elevation lines and with decaying waveforms. The existence of a strong magnetic field generates magnetohydrodynamic instability, leading to the plasma jet flame splitting. Understanding the effects of changing the strength of the external magnetic field on the plasma properties provides the ability to control the plasma Permart to make it suitable for many applications.
The effects of poles distances of a discharge tube (cathode and anode) were investigated. The distances(90,95,100,110,115,120,130,140)mm are considered. The influence of (25mT) parallel and (2mT) normal magnetic fields with respect to the discharge tube on electron temperature under a pressure of (6pascal) and (900volt) was studied by implementing double Langmuire probe into plasma. Curves fitting were performed to find the optimum values of electron temperature for all cases in this work.We found that the electron temperature as a function of poles distances is exponential form
Background: Polymer surfaces usually present problems in bonding and finishing due to their low hydrophilicity. The aim of this study is to investigate the effect of plasma treatment with the use of two types of gases (oxygen and argon) on surface roughness, and chemical surface properties of acrylic resin denture base polymer material. Materials and Methods: Three heat cured acrylic resin specimens of (2*8*30 mm) dimensions were prepared for each test carried out in this study. Two tests were conducted, surface roughness test and chemical surface analysis test. Results: Application of plasma treatment increased surface roughness for both oxygen and argon plasma treated acrylic resin specimen groups compared with control untreated group,
... Show MoreBackground: The preparation of Platelet-rich plasma (PRP) is minimally invasive way, simple, low cost to obtain natural autologous growth factors and is now being widely used in different fields of medicine for its ability to increase the regeneration potential of tissue. The aim of this study was to investigate the effect of local application of autologous PRP gel on acceleration rate of osseointegration period by clinical assessment accomplished by determining the changes in implant stability during 3 months healing period using resonance frequency analysis (RFA). Materials and methods: A total of 28 dental implants were inserted in edentulous maxillae or mandibles of 13 patients using a split mouth design, i.e. each patient was received
... Show MoreWhen employing shorter (sub picosecond) laser pulses, in ablation kinetics the features appear which can no longer be described in the context of the conventional thermal model. Meanwhile, the ablation of materials with the aid of ultra-short (sub picosecond) laser pulses is applied for micromechanical processing. Physical mechanisms and theoretical models of laser ablation are discussed. Typical associated phenomena are qualitatively regarded and methods for studying them quantitatively are considered. Calculated results relevant to ablation kinetics for a number of substances are presented and compared with experimental data. Ultra-short laser ablation with two-temperature model was quantitatively investigated. A two-temperature model
... Show MoreA new scheme of plasma-mediated thermal coupling has been implemented which yields the temporal distributions of the thermal flux which reaches the metal surface, from which the spatial and temporal temperature profiles can be calculated. The model has shown that the temperature of evaporating surface is determined by the balance between the absorbed power and the rate of energy loss due to evaporation. When the laser power intensity range is 107 to108 W/cm2 the temperature of vapor could increase beyond the critical temperature of plasma ignition, i.e. plasma will be ignited above the metal surface. The plasma density has been analyzed at different values of vapor temperature and pressure using Boltzmann’s code for calculation of elec
... Show MoreThe direct application of cold atmospheric plasma (CAP) is the main scope of plasma medicine in or on the organism for curative purposes. Cold plasma is both effective in disrupting a wide range of microorganisms including multiple drug resistant ones (MDRs) and to stimulate proliferation of mammalian cells. It has obtained by Floating Electrode Dielectric Barrier Discharge (FE-DBD) system. The present study aimed to show the effected of cold plasma on the fertility hormones LH, Prolactin, Estrogen, and Testosterone hormones for healthy adult female rats (Albino) / bulb c). There are divided into many groups according to time exposure of plasma (15, 30, 60, and 90 second) and a refere
Smoking has been accepted as a risk factor for many chronic diseases, including cardiovascular diseases, respiratory diseases, cancer, ulcers and osteoporosis. Tobacco smoke contains many oxidants and free radicals that can cause damage to lipids, proteins, DNA, carbohydrates and other biomolecules. In vivo, antioxidant nutrients which include vitamin C, selenium (Se), zinc (Zn) and copper (Cu) play a crucial role in defending against oxidant damage. The present study was designed to investigate the influence of cigarette smoking on serum Zn, Cu ,PCV,W.B.Cs., and BMI. Eighty healthy men (40 smokers and 40 non-smokers) from Baghdad, the capital of Iraq, volunteered to p
... Show MoreMost heuristic search method's performances are dependent on parameter choices. These parameter settings govern how new candidate solutions are generated and then applied by the algorithm. They essentially play a key role in determining the quality of the solution obtained and the efficiency of the search. Their fine-tuning techniques are still an on-going research area. Differential Evolution (DE) algorithm is a very powerful optimization method and has become popular in many fields. Based on the prolonged research work on DE, it is now arguably one of the most outstanding stochastic optimization algorithms for real-parameter optimization. One reason for its popularity is its widely appreciated property of having only a small number of par
... Show More