Abstract This research scrutinizes the impact of external magnetic field strength variations on plasma jet parameters to enhance its performance and flexibility. Plasma jets are widely used for their high thermal and kinetic energy in both medical and industrial fields. The study employs optical emission spectroscopy to measure electron temperature, electron density, and plasma frequency in a plasma jet subjected to varying magnetic field strengths (25, 50, 100, 150, and 250 mT). The results indicate that a stronger magnetic field results in higher electron temperature (1.485 to 1.991 eV), electron density (5.405 × 1017 to 7.095 × 1017), and plasma frequency 7.382 × 1012 to 8.253 × 1012 Hz. As well as the research investigates the influence of gas flow rate on gas temperature in the plasma jet. It is observed that gas temperature gradually drops with a growth in the flow rate of argon gas. The voltage and current waves have a sinusoidal waveform without elevation lines and with decaying waveforms. The existence of a strong magnetic field generates magnetohydrodynamic instability, leading to the plasma jet flame splitting. Understanding the effects of changing the strength of the external magnetic field on the plasma properties provides the ability to control the plasma Permart to make it suitable for many applications.
Baqubah city has grown extremely rapidly. The rate of growth exceeds the growth of services that must grow side by side with the growth of population. There are natural features that affect the growth of Baqubah city such as Dieyala river, Alssariya river, in addition to agricultural areas .All these natural features affect the growth of Baqubah city in the running form being seen . In this research the remote sensing and geographic information system (GIS) techniques are used for monitoring urban expansion and forecasting the probable axes to the growth of the city, and found that the probability of Baqubah growth to east is preferred due to Baqubah growth to the east would never interfere with natural features. Also in this res
... Show MoreThis research presents a study of using an additive for the objective of increasing the setting time of a material used in several aspects in the constructional field, this material is “Local-Gypsum” which is locally called “Joss”, and the additive used in this study is “Trees Glue Powder” denoted by “TGP”. Nine mixtures of Local-gypsum (joss) had been experimented in the current study to find their setting time, these mixes were divided into three groups according to their water-joss ratios (W/J) (0.3, 0.4 and 0.5), and each group was sub-divided into three sub-groups according to their TGP contents (0.0%, 0.3% and 0.6%). It was found that, when TGP is added with the
Abstract: Tin oxide thin films were deposited by direct current (DC) reactive sputtering at gas pressures of 0.015 mbar – 0.15 mbar. The crystalline structure and surface morphology of the prepared SnO2 films were introduced by X-ray diffraction (XRD) and atomic force microscopy (AFM). These films showed preferred orientation in the (110) plane. Due to AFM micrographs, the grain size increased non-uniformly as the working gas pressure increased.
The study aims to clarify the impact of growth in the industrial sector on economic growth in the Iraqi economics according to the methodology of Kaldor for (2017-2030) , taking into consideration the effect of the accumulation of capital in the calculation of growth rates in the economy through productivity estimate of Total Factor Productivity (TFP) to growth in the economy, which is why the study assumes a formula to comply with the laws of Kaldor growth models developed requirements. This study is the most important to find out the development of the laws of Kaldor among Arabic studies, especially the first and third, so that the relationship between the growth of industrial production and economic growth as represented
... Show MoreThe aim of this research is to study the optical properties of carbon-magnesium plasma resulting from arc discharge with explosive wire technique, where the energy gap of each of carbon and magnesium and the carbon-magnesium bond for three values of the wire exploding current (50,75,100 amperes) was studied. It was found that the energy gap for each of carbon and magnesium decreases with increasing the current, the X-ray diffraction of magnesium and the carbon-magnesium suspension was studied, and FTIR of the carbon-magnesium suspended carbon was studied for three values of the exploding current (50, 75, 100 amperes) and the type of bonds for carbon and magnesium was determined. To ob
Superconducting thin films of Bi1.6Pb0.4Sr2Ca2Cu2.2Zn0.8O10 system were prepared by depositing the film onto silicon (111) substrate by pulsed laser deposition. Annealing treatment and superconducting properties were investigated by XRD and four probe resistivity measurement. The analysis reveals the evolution of the minor phase of the films 2212 phase to 2223 phase, when the film was annealed at 820 °C. Also the films have superconducting behavior with transition temperature ≥90K.
This paper deals with the modeling of a preventive maintenance strategy applied to a single-unit system subject to random failures.
According to this policy, the system is subjected to imperfect periodic preventive maintenance restoring it to ‘as good as new’ with probability
p and leaving it at state ‘as bad as old’ with probability q. Imperfect repairs are performed following failures occurring between consecutive
preventive maintenance actions, i.e the times between failures follow a decreasing quasi-renewal process with parameter a. Considering the
average durations of the preventive and corrective maintenance actions a
... Show MoreIn this paper, we present new algorithm for the solution of the nonlinear high order multi-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of multi- point boundary value problems.
Cadmium element is one of the group IIB and classified as heavy metal and effects on human health and environment. The present work concerns with the biosorption of Cd(II) ions from aqueous solution using the outer layer of onions. Adsorption of the used ions was found to be pH dependent and maximum removal of the ions by outer layer of onions and was found to be 99.7%.