Objective: The aim of this study was to develop a bioadhesive gel of gatifloxacin for the treatment of periodontal diseases.Methods: Periodontal gels of gatifloxacin were prepared using different hydrophilic polymers such as carbopol 940 (CP 940), carboxymethyl cellulose (CMC) and hydroxypropylmethyl cellulose (HPMC) in varied concentrations, either alone or as a combination. The prepared gels were evaluated for their physical appearance, pH, drug content, viscosity, bioadhesiveness and in vitro drug release profile. The influence of the type and the concentration of polymer on the drug release as well as on viscosity and mucoadhesiveness of prepared gels were investigated.Results: The prepared gels showed acceptable physical properties concerning color, homogeneity, consistency, spreadability, and pH value. Using different polymer types at different concentrations, as well as different polymer combinations, play a significant role in the variation of overall characteristics of formulations. Increasing the concentration of polymer increased the viscosity as well as mucoadhesion, and reduced drug release rate. Formulation F 11 (1 % CP 940 and 5 % CMC) was selected as the formula of choice based on the data of various evaluation parameters such as pH, drug content, viscosity, spreadability and bioadhesion as well as its ability to show a prolonged drug release pattern.Conclusion: The obtained results show that a bioadhesive periodontal gel of gatifloxacin can be prepared using hydrophilic polymers, and by using a combination of polymers the viscosity, mucoadhesiveness, spreadability and release behavior can be optimized.
From 144 specimens of tonsillitis which were collected from patient, (children of 3 -12 year olds) there were 70 isolates beta hemolytic and 28 isolates were identified as S. pyogenes. Sensitivity of S. pyogenes isolates to antibiotics was tested, all isolates were sensitive to amoxicillin and cephaloxia while higher resistant were to erythromycin. One isolate whiche was 100 A had a stable characteristics and produce pyrogenic toxin was chosen for study and it was purified and characterized from the cell free supernatant of S. pyrogenes strain.
Starting from 4, - Dimercaptobiphenyl, a variety of phenolic Schiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis all analysis were performed in center of consultation in Jordan Universty.
In the present work, classification of radioactive wastes based on Annual Intake (AI) values is studied. Where the characterization of radionuclides was done by hand held GeLi detector with an overall efficiency better than 42%. It was noted the most predominant contaminant are Cs-137, Co-60 and Pa-234.The radioactive waste in disposal silo has been divided into five categories according to the harmful effect of radionuclides.For the purpose of storageradioactive wastein a safe manner, it wassuggesteda new method by shielding radioactive waste in each category with concrete;where the thickness of shielding is the time required to reduce the annual dose to 10%.
Ni-Co-Mn-Mg ferrite nanoparticles with the formula (Ni,Co)xMn0.25-xMg0.75Fe2O4 were synthesized in this work by employing the sol-gel auto-combustion process, with nitrates used as the cations source and citric acid (C6H8O7) as the combustion agent. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy dispersive X-ray (EDX), and a vibrating sample magnetometer (VSM) were used to characterize the structural, morphological, and magnetic properties of ferrite powders. The XRD measurements showed crystallite sizes ranging between 24 - 28 nm. The FE-SEM images show the presence of agglomeration as well as a non-homogeneous distribution of the samples. On the other hand, the stoichiometry of the react
... Show Moreتوصيف الاساليب الارهابية وسبل مواجهتها
In this work the fabrication and characterization of poly(3-hexylthiophene) P3HT-metallic nanoparticles (Ag, Al). Pulsed Laser Ablation (PLA) technique was used to synthesis the nanoparticles in liquid. The Fourier Transformer Infrared (FTIR) for all samples indicate the chemical interaction between the polymer and the nanoparticles. Scanning Electron Microscopic (SEM) analysis showed the particle size for P3HT-AgNps samples between 44.50 nanometers as well the spherical structure. While for P3HT-AlNps samples was flakes shape. Energy Dispersive X-ray (EDX) spectra show the existing of amount of metallic nanoparticles.
Isradipine belong to dihydropyridine (DHP) class of calcium channel blockers (CCBs). It is used in the treatment of hypertension, angina pectoris, in addition to Parkinson disease. It goes under the BCS class II drug (low solubility-high permeability). The drug will experience extensive first-pass metabolism in liver, therefore, oral bio-availability will be approximately15 to 24 %.
The aim of this study was to formulate and optimize a stable nanoparticles of a highly hydrophobic drug, isradipine by anti-solvent microprecipitation Method to achieve the higher in vitro dissolution rate, so that it will be absorbed by intestinal lymphatic transport in order to avoid hepatic first-pass metabolism&nbs
... Show MoreFelodipine is a calcium-channel blocker with low aqueous solubility and bioavailability. Lipid dosage forms are attractive delivery systems for such hydrophobic drug molecules. Nanoemulsion (NE) is one of the popular methods that has been used to solve the dispersibility problems of many drugs. Felodipine was formulated as a NE utilizing oleic acid as an oil phase, tween 80 and tween 60 as surfactants and ethanol as a co-surfactant. Eight formulas were prepared, and different tests were performed to ensure the stability of the NEs, such as particle size, polydispersity index, zeta potential, dilution test, drug content, viscosity and in-vitro drug release. Result
... Show MoreThe influence of annealing on quaternary compound Ag0.9Cu0.1InSe2 (ACIS) thin film is considered a striking semiconductor for second-generation solar cells. The film deposited by thermal evaporation with a thickness of about 700 nm at R.T and vacuum annealing at temperatures (373,473) K for 1 hour. It was deposited in a vacuum of 4.5*10-5 Torr on a glass substrate. From XRD and AFM analysis, it is evident that Ag0.9Cu0.1InSe2 films are polycrystalline in nature, having ideal stoichiometric composition. Structural analysis indicated that annealing the films following the deposition resulted in the increasing polycrystalline phase with the preferred orientation along (112) direction. , increasing crystallite size and average grain size
... Show MoreIn this study, polymeric ultrafiltration (UF) membranes were prepared by phase inversion method to obtain both antibacterial and organic antifouling properties. The membranes were cast from a solution of polyvinylidene fluoride (PVDF) and formative silver (Ag) nanoparticles were successfully immobilized on a polymer. This was done using a solvent N, N-dimethylformamide (DMF) which is a solvent for the PVDF polymer meanwhile it is a reducing agent for silver ion. The effect of silver nanoparticles additives on the performance of polymeric ultrafiltration membrane was verified. Chemical composition and morphology of the surfaces of the membranes were characterized by Fourier transform infrared spectroscopy
... Show More