Alumina thin films have significant applications in the areas of optoelectronics, optics, electrical insulators, sensors and tribology. The novel aspect of this work is that the homogeneous alumina thin films were prepared in several stages to generate a plasma jet. In this paper, aluminium nanoparticles suspended in vinyl alcohol were prepared using exploding wire plasma. TEM analysis was used to determine the size and shape of particles in aluminium and vinyl alcohol suspensions; the TEM images showed that the particle size is 17.2 nm. Aluminium/poly vinyl alcohol (Al/PVA) thin films were prepared using this suspension on quartz substrate by plasma jet technique at room temperature with an argon gas flow rate of 1 L/min. The Al/PVA thin films were thermally converted to alumina films, where they were annealed at different temperatures (700, 800, or 900°C). X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques were used to characterise these thin films before and after annealing process. The diffraction patterns of the prepared thin films before subjecting them to the annealing process indicated the presence of peaks belonging to aluminium and PVA; however, the diffraction patterns and FTIR spectra obtained for these films after the annealing process showed peaks indicating the formation of alumina films of different phases. AFM and SEM investigations proved that the formed particles for all prepared films before and after the annealing process were similar in size and almost spherical; the diameter of the particles was on the order of a few nanometres. To control the properties of prepared thin films, the plasma which was used to produce thin films is diagnosed spectrophotometrically. The generated plasma was diagnosed using optical emission spectroscopy to estimate the electron temperature Te; the electron temperature was 1.925 eV.
The substrate's nature plays an important role in the characteristics of semiconductor films because of the thermal and lattice mismatching between the film and the substrate. In this study, tin sulfide (SnS) nanostructured thin films were grown on different substrates (polyester, glass, and silicon) using a simple and low-cost chemical bath deposition technique. The structural, morphological, and optical properties of the grown thin films were investigated using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy. The XRD and FESEM results of the prepared films revealed that each film is polycrystalline and exhibits both orthorhombic and cubic stru
... Show MoreThin films of ZnSe arc deposited on glass substrates by thermal evaporation in vacuum with different thickness (1000, 2700, 4000) A° temperature (293-373) °K are studies the electrical properties before and after annealing. The result show decrease D.0 conductivity and increasing the activation energy Eat.
In this research prepare membranes pure silicon carbide (SiC) as well as gas Alloy (ammonia) and using a laser was leaked membrane of glass flooring. To Drasesh optical properties of membranes prepared depending on the technique (Swanepoel) and Adhrt results obtained in general increased permeability pure silicon membranes
In this paper, we investigate the basic characteristics of "magnetron sputtering plasma" using the target V2O5. The "magnetron sputtering plasma" is produced using "radio frequency (RF)" power supply and Argon gas. The intensity of the light emission from atoms and radicals in the plasma measured by using "optical emission spectrophotometer", and the appeared peaks in all patterns match the standard lines from NIST database and employed are to estimate the plasma parameters, of computes electron temperature and the electrons density. The characteristics of V2O5 sputtering plasma at multiple discharge provisos are studied at the "radio frequency" (RF) power ranging from 75 - 150 Wat
... Show MoreThe study of biopolymers and their derivative materials had received a considerable degree of attention from researchers in the preparation of novel material. Biopolymers and their derivatives have a wide range of applications as a result of their bio-compatibility, bio-degradability and non-toxicity. In this paper, chitosan reacted with different aldehydes(2,4 –dichloro- benzaldehyde or 2-methyl benzaldehyde), different ketones (4-bromoacetophenone or 3-aminoacetophenone) to produce chitosan schiff base (1-4) . Chitosan schiff base (1-4) reacted with glutaric acid or adipic acid in acidic media in distilled water according to the steps of Fischer and Speier to produce compounds (5-12)
... Show MoreElectrocoagulation is an electrochemical method for treatment of different types of wastewater whereby sacrificial anodes corrode to release active coagulant (usually aluminium or iron cations) into solution, while simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation or settling. The Taguchi method was applied as an experimental design and to determine the best conditions for chromium (VI) removal from wastewater. Various parameters in a batch stirred tank by iron metal electrodes: pH, initial chromium concentration, current density, distance between electrodes and KCl concentration were investigated, and the results have been analyzed using signal-to-noise (S/N) ratio. It was found that the r
... Show MoreIn this work, the fractional damped Burger's equation (FDBE) formula = 0,
The linear segment with parabolic blend (LSPB) trajectory deviates from the specified waypoints. It is restricted to that the acceleration must be sufficiently high. In this work, it is proposed to engage modified LSPB trajectory with particle swarm optimization (PSO) so as to create through points on the trajectory. The assumption of normal LSPB method that parabolic part is centered in time around waypoints is replaced by proposed coefficients for calculating the time duration of the linear part. These coefficients are functions of velocities between through points. The velocities are obtained by PSO so as to force the LSPB trajectory passing exactly through the specified path points. Also, relations for velocity correction and exact v
... Show More