Alumina thin films have significant applications in the areas of optoelectronics, optics, electrical insulators, sensors and tribology. The novel aspect of this work is that the homogeneous alumina thin films were prepared in several stages to generate a plasma jet. In this paper, aluminium nanoparticles suspended in vinyl alcohol were prepared using exploding wire plasma. TEM analysis was used to determine the size and shape of particles in aluminium and vinyl alcohol suspensions; the TEM images showed that the particle size is 17.2 nm. Aluminium/poly vinyl alcohol (Al/PVA) thin films were prepared using this suspension on quartz substrate by plasma jet technique at room temperature with an argon gas flow rate of 1 L/min. The Al/PVA thin films were thermally converted to alumina films, where they were annealed at different temperatures (700, 800, or 900°C). X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR) techniques were used to characterise these thin films before and after annealing process. The diffraction patterns of the prepared thin films before subjecting them to the annealing process indicated the presence of peaks belonging to aluminium and PVA; however, the diffraction patterns and FTIR spectra obtained for these films after the annealing process showed peaks indicating the formation of alumina films of different phases. AFM and SEM investigations proved that the formed particles for all prepared films before and after the annealing process were similar in size and almost spherical; the diameter of the particles was on the order of a few nanometres. To control the properties of prepared thin films, the plasma which was used to produce thin films is diagnosed spectrophotometrically. The generated plasma was diagnosed using optical emission spectroscopy to estimate the electron temperature Te; the electron temperature was 1.925 eV.
This research is devoted to investigate relationship between both Ultrasonic Pulse Velocity and Rebound Number (Hammer Test) with cube compressive strength and also to study the effect of steel reinforcement on these relationships.
A study was carried out on 32 scale model reinforced concrete elements. Non destructive testing campaign (mainly ultrasonic and rebound hammer tests) made on the same elements. About 72 concrete cubes (15 X 15 X15) were taken from the concrete mixes to check the compressive strength.. Data analyzed.Include the possible correlations between non destructive testing (NDT) and compressive strength (DT) Statistical approach is used for this purpose. A new relationships obtained from correlations results is give
A sensitive and selective method have been developed for the determination of palladium (II)and platinum (II) . A new reagent and two complexes have been prepared in ethanolic solutions .The method is based on the chelation of metal ions with 4-(4?- pyrazolon azo) resorcinol (APAR) to form intense color soluble products, that are stable and have a maximum absorption at 595 nm and at 463 nm and ?max of 1.11×10 4 and.1.35 ×104 Lmole-1cm-1 for Pd(II) Pt(II) respectively. A linear correlation of (1.4 – 0.2) and (3.2 -0.4 ) ppm for pd(II) pt(II) respectively .The stability constants , relative errors , a relative standard deviations for Pd(II) and Pt(II) were 0.40×105 , 0.4×104 L mol-1 ,0.34 - 0.21% and 2.4 – 0.91% respectively.
... Show MoreBrucella melitensis isolates were obtained from human infections , and milk which obtained from aborted sheep at Mosul city vicinity . One isolate from each source was used in carrying out this study. Brucella liquid culture was added to sheep milk at 2.5 % for treatments . To first treatment 2 % of yoghurt starter ( Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus salivarius subsp. thermophilus ( 1: 1 ) ) . Second treatment was carried out without addition of yoghurt starter but the pH was lowered using lactic acid in pattern similar to first treatment . Third treatment was similar to the first treatment but contained buffer to alleviate the reduction in pH , which reduced to 6.1 in comparison to 4.9 of the first treatment .
... Show MoreHeavy metal ion removal from industrial wastewater treatment systems is still difficult because it contains organic contaminants. In this study, functional composite hydrogels with photo Fenton reaction activity were used to decompose organic contaminants. Fe3O4 Nanoparticle, chitosan (CS), and other materials make up the hydrogel. There are different factors that affected Photo-Fenton activity including (pH, H2O2 conc., temp., and exposure period). Atomic force microscopy was used to examine the morphology of the composite and its average diameter (AFM). After 60 minutes of exposure to UV radiation, CS/ Fe3O4 hydrogel composite had degraded methylene blue (M.B.)
... Show MoreThe reducing of erosion and the solubility of irrigation canals soils which constructed on gypsum soil is important in civil and water resources engineering. The main problem of gypsum soils is the presence of gypsum which represents one of most complex engineering problems, especially when accompanied by the moving of water which represent dynamic load along the canal. There are several solutions to this problem, in this research “Poly urethane” is used to give the gypsum soil sufficient hardness to reduce the solubility and erosion, after compacting the soil in the canal, percentages of Poly urethane was used to making cover to the soil by mixing percent of soil with Poly urethane, and the ratio was as follows: (5 and 10) % an
... Show MoreIN this work, a titanium dental implant was modified by electro-polymerized of 4-allyl-2-methoxyphenol (Eugenol) using direct current lower than 3.5 volt. The modification of titanium dental implant was achieved to improve its corrosion resistant. Fourier transform infrared spectroscopy (FTIR) was employed to confirm the electro-polymerization of Eugenol to Poly Eugenol (PE) on pure titanium. Deposition of PE on titanium was confirmed by X-ray diffraction and was characterized by thermogravimetric analysis (TGA). The surface morphology of polymeric film were examined through scanning electron microscopy (SEM). Coated titanium by (PE) revealed a good corrosion protection efficiency even at temperature ranged (293-323)K in artificial saliva.
... Show MoreWater flooding is one of the most important methods used in enhanced production; it was a pioneer method in use, but the development of technology within the oil industry, takes this subject toward another form in the oil production and application in oil fields with all types of oils and oil reservoirs. Now days most of the injection wells directed from the vertical to re-entry of full horizontal wells in order to get full of horizontal wells advantages.
This paper describes the potential benefits for using of re-entry horizontal injection wells as well as combination of re –entry horizontal injection and production wells. Al Qurainat productive sector was selected for study, which is one of the four main productive sectors of Sout