Necessary and sufficient conditions for the operator equation I AXAX n*, to have a real positive definite solution X are given. Based on these conditions, some properties of the operator A as well as relation between the solutions X andAare given.
In this paper, Bayes estimators of the parameter of Maxwell distribution have been derived along with maximum likelihood estimator. The non-informative priors; Jeffreys and the extension of Jeffreys prior information has been considered under two different loss functions, the squared error loss function and the modified squared error loss function for comparison purpose. A simulation study has been developed in order to gain an insight into the performance on small, moderate and large samples. The performance of these estimators has been explored numerically under different conditions. The efficiency for the estimators was compared according to the mean square error MSE. The results of comparison by MSE show that the efficiency of B
... Show MoreIn this paper, the impact of magnetic force, rotation, and nonlinear heat radiation on the peristaltic flow of a hybrid bio -nanofluids through a symmetric channel are investigated. Under the assumption of a low Reynolds number and a long wavelength, the exact solution of the expression for stream function, velocity, heat transfer coefficient, induced magnetic field, magnetic force, and temperature are obtained by using the Adomian decomposition method. The findings show that the magnetic force contours improve when the magnitude of the Hartmann number M is high and decreases when rotation increases. Lastly, the effects of essential parameters that appear in the problem are analyzed through a graph. Plotting all figures is done using the
... Show MoreIn this research we have been studied the 3rd order spherical aberration for an optical system consisted of obscured circular aperture with non central circular obscuration through the calculation of point spread function (P.S.F) in presence of the obscuration in the center and comparing the obtained results with that results of moving obscuration far away from the center, where the results showed significant improvement for(P.S.F) value. The study was done of different obscurities ratios in addition to the different 3rd order spherical aberration values (W40=0.25 ,0.5 ,0.75 ,1 ).
This research deals with the risks of non-compliance and its impact on the profitability of Islamic banks. Research variables were measured and analyzed as the risk of non-compliance as an independent variableand profitability as a dependent variable. The profitability was measured by three indicators ((rate of return on assets, rate of return on equity and rate of return on Total deposits)) The results of the research showed a significant relationship between the risk of non-compliance and the rate of return on assets and rate of return on total deposits, while there was no relationship between the risk of non-compliance and rate of return on ownership. The research recommended that the senior management of the Islamic Investment Bank s
... Show MoreIn this study, a new technique is considered for solving linear fractional Volterra-Fredholm integro-differential equations (LFVFIDE's) with fractional derivative qualified in the Caputo sense. The method is established in three types of Lagrange polynomials (LP’s), Original Lagrange polynomial (OLP), Barycentric Lagrange polynomial (BLP), and Modified Lagrange polynomial (MLP). General Algorithm is suggested and examples are included to get the best effectiveness, and implementation of these types. Also, as special case fractional differential equation is taken to evaluate the validity of the proposed method. Finally, a comparison between the proposed method and other methods are taken to present the effectiveness of the proposal meth
... Show MoreThis paper is concerned with the numerical solutions of the vorticity transport equation (VTE) in two-dimensional space with homogenous Dirichlet boundary conditions. Namely, for this problem, the Crank-Nicolson finite difference equation is derived. In addition, the consistency and stability of the Crank-Nicolson method are studied. Moreover, a numerical experiment is considered to study the convergence of the Crank-Nicolson scheme and to visualize the discrete graphs for the vorticity and stream functions. The analytical result shows that the proposed scheme is consistent, whereas the numerical results show that the solutions are stable with small space-steps and at any time levels.
The objective of this study is to examine the properties of Bayes estimators of the shape parameter of the Power Function Distribution (PFD-I), by using two different prior distributions for the parameter θ and different loss functions that were compared with the maximum likelihood estimators. In many practical applications, we may have two different prior information about the prior distribution for the shape parameter of the Power Function Distribution, which influences the parameter estimation. So, we used two different kinds of conjugate priors of shape parameter θ of the <
... Show More