Constructing a fine 3D geomodel for complex giant reservoir is a crucial task for hydrocarbon volume assessment and guiding for optimal development. The case under study is Mishrif reservoir of Halfaya oil field, which is an Iraqi giant carbonate reservoir. Mishrif mainly consists of limestone rocks which belong to Late Cenomanian age. The average gross thickness of formation is about 400m. In this paper, a high-resolution 3D geological model has been built using Petrel software that can be utilized as input for dynamic simulation. The model is constructed based on geological, geophysical, pertophysical and engineering data from about 60 available wells to characterize the structural, stratigraphic, and properties distribution along the reservoir. Fourteen geological surfaces for all Mishrif units have been generated based on well tops data and top Mishrif structural map. The reservoir has been divided into 163 sublayers through the vertical direction and 160*383 grid cells in x-y direction with 9,988,640 total grid cells. A scale up process are performed for well log data, then, Sequential Gaussian Simulation algorithm are applied to fill 3D grid cells with properties values in areas away from wells. Pertophysical properties distribution for all reservoir zones are analyzed. The estimated initial oil in place of Mishrif through this model is close to that calculated in other previous studies.
The current study includes building (CPI) & Petrophysical Evaluation of the Mishrif Formation (Cenomanian-Early Turonian) in Tuba oilfield, southern Iraq by using Interactive Petrophysics Program v3.5 (IP) to evaluate different logs parameters that control the reservoir quality of Mishrif Formation such as shale volume, effective porosity, and water saturation. Mishrif Formation is subdivided into several units, which are characterized by different reservoir properties. These units are Top of Mishrif, MA, CR2, MB1, and MB2.The results of computer processed interpretation (CPI) show that the major reservoir unit are (MB1 and MB2), which are characterized by high effective porosity and oil saturation. In addition, these uni
... Show MoreDiagenetic processes and types of pores that control the reservoir properties are studied for Mauddud Formation in selected wells of Badra oil field, central Iraq. The microscopic study of the thin sections shows the effects of micritization, cementation, neomorphism, dissolution, dolomitization, compaction, and fracturing on Mauddud Formation carbonate microfacies. The decrease of porosity is resulted from cementation, compaction, and neomorphism. Different types of calcite cement occlude pore spaces such as drusy cement, syntaxial rim cement, and granular (blocky) cement. The neomorphism of micritic matrix and skeletal grains reduces porosity as indicated by development of microspar or pseudospar. Evidence of decreasing porosity by com
... Show MoreThis study aims to evaluate reservoir characteristics of Hartha Formation in Majnoon oil field based on well logs data for three wells (Mj-1, Mj-3 and Mj-11). Log interpretation was carried out by using a full set of logs to calculate main petrophysical properties such as effective porosity and water saturation, as well as to find the volume of shale. The evaluation of the formation included computer processes interpretation (CPI) using Interactive Petrophysics (IP) software. Based on the results of CPI, Hartha Formation is divided into five reservoir units (A1, A2, A3, B1, B2), deposited in a ramp setting. Facies associations is added to well logs interpretation of Hartha Formation, and was inferred by a microfacies analysis of th
... Show MoreShuaiba Formation is a carbonate succession deposited within Aptian Sequences. This research deals with the petrophysical and reservoir characterizations characteristics of the interval of interest in five wells of the Nasiriyah oil field. The petrophysical properties were determined by using different types of well logs, such as electric logs (LLS, LLD, MFSL), porosity logs (neutron, density, sonic), as well as gamma ray log. The studied sequence was mostly affected by dolomitization, which changed the lithology of the formation to dolostone and enhanced the secondary porosity that replaced the primary porosity. Depending on gamma ray log response and the shale volume, the formation is classified into three zone
... Show MoreDyslexia is a learning disability in which people face difficulty reading though they are intelligent and have motivation for reading. Therefore; it impacts the portion of the brain responsible for processing language. Such a condition compromises the learning efficiency of the affected person, which generally gets unnoticed. Even affected children are unaware of their state. The study investigates the knowledge and awareness of dyslexia among teachers of English in Iraqi primary schools. this study has three objectives: (i) To investigate the amount of awareness and knowledge among the primary school teachers of English in Baghdad City about dyslexia.; (ii) To examine how English teachers’ awareness of dyslexia is affected by the
... Show MoreUnconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show MoreChanging oil-wet surfaces toward higher water wettability is of key importance in subsurface engineering applications. This includes petroleum recovery from fractured limestone reservoirs, which are typically mixed or oil-wet, resulting in poor productivity as conventional waterflooding techniques are inefficient. A wettability change toward more water-wet would significantly improve oil displacement efficiency, and thus productivity. Another area where such a wettability shift would be highly beneficial is carbon geo-sequestration, where compressed CO2 is pumped underground for storage. It has recently been identified that more water-wet formations can store more CO2. We thus examined how silica based nanofluids can induce such a wettabil
... Show More