Preferred Language
Articles
/
wRZfQ4cBVTCNdQwCUj7b
Surface Characterization of PEKK Modified by stron-tium –hydroxyapatite coating as implant material Via the magnetron sputtering Deposition technique
...Show More Authors

Background: The best material for dental implants is polyetherketoneketone (PEKK). However, this substance is neither osteoinductive nor osteoconductive, preventing direct bone apposition. Modifying the PEKK with bioactive elements like strontium hydroxyapatite is one method to overcome this (Sr-HA). Due to the technique's capacity to provide better control over the coating's properties, RF magnetron sputtering has been found to be a particularly useful technique for deposition. Materials and methods : With specific sputtering conditions, the RF magnetron technique was employed to provide a homogeneous and thin coating on Polyetherketoneketone substrates.. the coatings were characterized by Contact angle, adhesion test, X-ray diffraction (XRD), atomic force microscope and Elemental Analysis with Energy Dispersive X-Ray (EDX) Results : indicated that strontium hydroxyapatite had successfully deposited onto the surface with significant improvement in the wettability value to provide a suitable environment for cell attachment, spreading, proliferation, and differentiation Conclusion: Coating PEKK with RF magnetron sputtering can provide homogeneous surfaces laying the groundwork for improving PEKK's potential bioactivity, such as surface wettability. Wetting qualities are critical in implantable materials and are used to predict future osseointegration success.

Crossref
Publication Date
Sat Aug 19 2023
Journal Name
Silicon
Structural and Hardness Characteristics of Silicon Nitride Thin Films Deposited on Metallic Substrates by DC Reactive Sputtering Technique
...Show More Authors

View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Feb 20 2019
Journal Name
Iraqi Journal Of Physics
Synthesis, characterization, and optical properties of copper oxide thin films obtained by spray pyrolysis deposition
...Show More Authors

     Copper oxide thin films were synthesized by using spray pyrolysis deposition technique, in the temperature around 400°C in atmosphere from alcoholic solutions. Copper (II) chloride as precursor and glass as a substrate. The textural and structural properties of the films were characterized by atomic force microscopy (AFM), X-ray diffraction (XRD). The average particle size determined from the AFM images ranged from 30 to 90 nm and the roughness average was equal to 9.3 nm. The XRD patterns revealed the formation of a polycrystalline hexagonal CuO. The absorption and transmission spectrum, band gap, film thickness was investigated. The films were tested as an

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Physics
Characteristics of Zinc Oxide Film Prepared by Chemical Spray Deposition as a Gas Sensor
...Show More Authors

Zinc oxide thin films were deposited by chemical spray pyrolysis onto glass substrates which are held at a temperature of 673 K. Some structural, electrical, optical and gas sensing properties of films were studied. The resistance of ZnO thin film exhibits a change of magnitude as the ambient gas is cycled from air to oxygen and nitrogen dioxide

View Publication Preview PDF
Publication Date
Fri Feb 08 2019
Journal Name
Iraqi Journal Of Laser
Study the Effect of Annealing on Optical and Electrical Properties of ZnS Thin Film Prepared by CO2 Laser Deposition Technique
...Show More Authors

In this work, ZnS thin films have been deposited by developed laser deposition technique on glass substrates at room temperature. After deposition process, the films were annealed at different temperatures (200ºC , 300 ºC and 400ºC ) using thermal furnace.The developed technique was used to obtain homogeneous thin films of ZnS depending on vaporization of this semiconductor material by continuous CO2 laser with a simple fan to ensure obtaining homogeneous films. ZnS thin films were annealed at temperature 200ºC, 300 ºC and 400ºC for (20) minute in vacuum environment. Optical properties of ZnS thin film such as absorbance, transmittance, reflectance, optical band gap, refractive index extinction coefficient and absorption coefficien

... Show More
View Publication Preview PDF
Publication Date
Tue Jun 30 2015
Journal Name
Al-khwarizmi Engineering Journal
Laser Peening on Aluminum Alloy 7049 Using Black Paint Surface Coating
...Show More Authors

Abstract

Black paint laser peening (bPLP) technique is currently applied for many engineering materials , especially for aluminum alloys due to high improvement in fatigue life and strength . Constant and variable   bending fatigue tests have been performed at RT and stress ratio R= -1 . The results of the present  work observed that the significance of the surface work hardening which generated high negative residual stresses in bPLP specimens .The fatigue life  improvement factor (FLIF)  for bPLP constant fatigue behavior was from 2.543 to 3.3 compared to untreated  fatigue and the increase in fatigue strength at 107 cycle was 21% . The bPLP cumulative fatigue life behav

... Show More
View Publication Preview PDF
Publication Date
Thu Feb 07 2019
Journal Name
Iraqi Journal Of Laser
Synthesis Characterization and Optical Properties of Nanostructured Zinc Sulfide Thin Films Obtained by Spray Pyrolysis Deposition
...Show More Authors

In this work, nanostructure zinc sulfide (ZnS) thin films at temperature of substrate 450 oC and thickness (120) nm have been produced by chemical spray pyrolysis method. The X-Ray Diffraction (XRD) measurements of the film showed that they have a polycrystalline structure and possessed a hexagonal phase with strong crystalline orientation of (103). The grain size was measured using scanning electron microscope (SEM) which was approximately equal to 80 nm. The linear optical measurements showed that ZnS nanostructure has direct energy gap. Nonlinear optical properties experiments were performed using Q-switched 532 nm Nd:YAG laser Z-scan system. The nonlinear refractive index (n2) and nonlinear absorption coefficient (β) estimated for Z

... Show More
View Publication Preview PDF
Publication Date
Fri Sep 09 2022
Journal Name
Journal Of Ovonic Research
The effects of CuO doping on structural, electrical and optical properties of CdO thin films deposited by pulsed laser deposition technique
...Show More Authors

Thin films of (CdO)x (CuO)1-x (where x = 0.0, 0.2, 0.3, 0.4 and 0.5) were prepared by the pulsed laser deposition. The CuO addition caused an increase in diffraction peaks intensity at (111) and a decrease in diffraction peaks intensity at (200). As CuO content increases, the band gap increases to a maximum of 3.51 eV, maximum resistivity of 8.251x 104 Ω.cm with mobility of 199.5 cm2 / V.s, when x= 0.5. The results show that the conductivity is ntype when x value was changed in the range (0 to 0.4) but further addition of CuO converted the samples to p-type.

View Publication
Scopus (7)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Urology Annals
Modified snodgrass hypospadias repair using the lembert suturing technique
...Show More Authors

View Publication
Scopus (1)
Scopus Clarivate Crossref
Publication Date
Fri Dec 30 2022
Journal Name
Iraqi Journal Of Science
Structural, Optical, and Morphological Study of the Zinc Oxide Nano-Thin Films with Different Thickness Prepared by Pulsed Laser Deposition Technique
...Show More Authors

The goal of this investigation is to prepare zinc oxide (ZnO) nano-thin films by pulsed laser deposition (PLD) technique through Q-switching double frequency Nd:YAG laser (532 nm) wavelength, pulse frequency 6 Hz, and 300 mJ energy under vacuum conditions (10-3 torr) at room temperature. (ZnO) nano-thin films were deposited on glass substrates with different thickness of 300, 600 and 900 nm. ZnO films, were then annealed in air at a temperature of 500 °C for one hour. The results were compared with the researchers' previous theoretical study. The XRD analysis of ZnO nano-thin films indicated a hexagonal multi-crystalline wurtzite structure with preferential growth lines (100), (002), (101) for ZnO nano-thin films with different thi

... Show More
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Aug 26 2025
Journal Name
Journal Of Baghdad College Of Dentistry
The Electrophoretic Deposition of Nano Al2O3 and AgNO3 on CpTi Dental Implant (An in vitro and in vivo study)
...Show More Authors

Background: Even the wide use of dental implants, still there is a proportion of implants are failed due to infection. Much considerable attention has been paid to modify the implant surface. Coating of dental implant with a biocomposite material of suitable properties can improve osseointegration. And this is the main concern of this study. The aim of present study was to evaluate the use of a biocomposite coating of dental implant with (ceramic nano Al2O3 and metalic AgNo3) on the bond strength at bone – implant interface and tissue reaction. Materials and methods: A total number of forty-eight screws, CpTi dental implant used in this study. Half of these screws were coated with a biocomposite material of nano (Al2O3and AgNo3), thi

... Show More
View Publication Preview PDF
Crossref (5)
Crossref